Skip to main content
Log in

Higher-order boundary regularity estimates for nonlocal parabolic equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We establish sharp higher-order Hölder regularity estimates up to the boundary for solutions to equations of the form \(\partial _tu-Lu=f(t,x)\) in \(I\times \Omega \) where \(I\subset \mathbb {R}\), \(\Omega \subset \mathbb {R}^n\) and f is Hölder continuous. The nonlocal operators L that we consider are those arising in stochastic processes with jumps, such as the fractional Laplacian \((-\Delta )^s\), \(s\in (0,1)\). Our main result establishes that, if f is \(C^\gamma \) is space and \(C^{\gamma /2s}\) in time, and \(\Omega \) is a \(C^{2,\gamma }\) domain, then \(u/d^s\) is \(C^{s+\gamma }\) up to the boundary in space and u is \(C^{1+\gamma /2s}\) up the boundary in time, where d is the distance to \(\partial \Omega \). This is the first higher order boundary regularity estimate for nonlocal parabolic equations, and is new even for the fractional Laplacian in \(C^\infty \) domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abatangelo, N., Valdinoci, E.: Getting acquainted with the fractional Laplacian. (2017). arXiv:1710.11567

  2. Applebaum, D.: Lévy processes—from probability to finance and quantum groups. Not. AMS 51, 1336–1347 (2004)

    MATH  Google Scholar 

  3. Barrios, B., Figalli, A., Ros-Oton, X.: Free boundary regularity in the parabolic fractional obstacle problem. Commun. Pure Appl. Math. (in press) (2018)

  4. Bogdan, K.: The boundary Harnack principle for the fractional Laplacian. Stud. Math. 123, 43–80 (1997)

    Article  MathSciNet  Google Scholar 

  5. Bogdan, K., Kulczycki, T., Kwasnicki, M.: Estimates and structure of \(\alpha \)-harmonic functions. Probab. Theory Relat. Fields 140, 345–381 (2008)

    Article  MathSciNet  Google Scholar 

  6. Bogdan, K., Kumagai, T., Kwasnicki, M.: Boundary Harnack inequality for Markov processes with jumps. Trans. Am. Math. Soc. 367, 477–517 (2015)

    Article  MathSciNet  Google Scholar 

  7. Bucur, C., Valdinoci, E.: Nonlocal Diffusions and Applications, Lecture Notes of the Unione Matematica Italiana. Springer, Berlin (2016)

    Google Scholar 

  8. Caffarelli, L., Cabré, X.: Fully Nonlinear Elliptic Equations, vol. 43. AMS Colloquium Publications, New York (1995)

    MATH  Google Scholar 

  9. Chang-Lara, H., Dávila, G.: Regularity for solutions of nonlocal parabolic equations II. J. Differ. Equ. 256, 130–156 (2014)

    Article  MathSciNet  Google Scholar 

  10. Chang-Lara, H., Kriventsov, D.: Further time regularity for non-local, fully non-linear parabolic equations. Commun. Pure Appl. Math. 70, 950–977 (2017)

    Article  Google Scholar 

  11. Cont, R., Tankov, P.: Financial Modelling With Jump Processes. Financial Mathematics Series. Chapman & Hall, Boca Raton (2004)

    MATH  Google Scholar 

  12. De Silva, D., Savin, O.: Boundary Harnack estimates in slit domains and applications to thin free boundary problems. Rev. Mat. Iberoam. 32, 891–912 (2016)

    Article  MathSciNet  Google Scholar 

  13. Fernández-Real, X., Ros-Oton, X.: Regularity theory for general stable operators: parabolic equations. J. Funct. Anal. 272, 4165–4221 (2017)

    Article  MathSciNet  Google Scholar 

  14. Garofalo, N.: Fractional thoughts. (2017). arXiv:1712.03347

  15. Gonzalez, M.d.M.: Recent progress on the fractional Laplacian in conformal geometry. Chapter in the book “Recent Developments in the Nonlocal Theory”, De Gruyter (2018)

  16. Grubb, G.: Fractional Laplacians on domains, a development of Hörmander’s theory of \(\mu \)-transmission pseudodifferential operators. Adv. Math. 268, 478–528 (2015)

    Article  MathSciNet  Google Scholar 

  17. Grubb, G.: Local and nonlocal boundary conditions for \(\mu \)-transmission and fractional elliptic pseudodifferential operators. Anal. PDE 7, 1649–1682 (2014)

    Article  MathSciNet  Google Scholar 

  18. Grubb, G.: Regularity in \(L_p\) Sobolev spaces of solutions to fractional heat equations. J. Funct. Anal. 274, 2634–2660 (2018)

    Article  MathSciNet  Google Scholar 

  19. Grubb, G.: Fractional-order operators: boundary problems, heat equations, to appear in Springer Proceedings in Mathematics and Statistics: “New Perspectives in Mathematical Analysis—Plenary Lectures, ISAAC 2017, Vaxjo Sweden”

  20. Jin, T., Xiong, J.: Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete Contin. Dyn. Syst. A 35, 5977–5998 (2015)

    Article  MathSciNet  Google Scholar 

  21. Landkof, N.S.: Foundations of Modern Potential Theory. Springer, New York (1972)

    Book  Google Scholar 

  22. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  Google Scholar 

  23. Ros-Oton, X.: Nonlocal elliptic equations in bounded domains: a survey. Publ. Mat. 60, 3–26 (2016)

    Article  MathSciNet  Google Scholar 

  24. Ros-Oton, X.: Boundary regularity, Pohozaev identities, and nonexistence results, Chapter in the book “Recent Developments in the Nonlocal Theory”, De Gruyter (2018)

  25. Ros-Oton, X., Serra, J.: Regularity theory for general stable operators. J. Differ. Equ. 260, 8675–8715 (2016)

    Article  MathSciNet  Google Scholar 

  26. Ros-Oton, X., Serra, J.: Boundary regularity for fully nonlinear integro-differential equations. Duke Math. J. 165, 2079–2154 (2016)

    Article  MathSciNet  Google Scholar 

  27. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes: Stochastic Models With Infinite Variance. Chapman and Hall, New York (1994)

    MATH  Google Scholar 

  28. Schwab, R.W., Silvestre, L.: Regularity for parabolic integro-differential equations with very irregular kernels. Anal. PDE 9, 727–772 (2016)

    Article  MathSciNet  Google Scholar 

  29. Serra, J.: Regularity for fully nonlinear nonlocal parabolic equations with rough kernels. Calc. Var. Partial Differ. Equ. 54, 615–629 (2015)

    Article  MathSciNet  Google Scholar 

  30. Song, R., Wu, J.-M.: Boundary Harnack principle for symmetric stable processes. J. Funct. Anal. 168, 403–427 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for his/her careful and detailed reading of this manuscript and for his/her suggestions and corrections. The fisrt author was supported by MINECO Grants MTM2014-52402-C3-1-P and MTM2017-84214-C2-1-P. The second author was supported by a Conicet scholarship and by NSF Grant DMS-1540162.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernán Vivas.

Additional information

Communicated by L. Ambrosio.

Appendix

Appendix

In this Appendix we prove Proposition 4.1. The proof will follow the same compactness argument as the boundary regularity. We start with the following Liouville type result:

Lemma 5.1

Let \(s\in (0,1)\), \(\beta \in (0,1)\) and \(\alpha \in (0,s)\) satisfying \(\alpha +\beta <2s\). Let w satisfy

$$\begin{aligned} (\partial _t-L)(w(\cdot +\tau ,\cdot +h)-w(\cdot ,\cdot )) = 0 \,\text { in }\, (-\infty ,0)\times \mathbb {R}^n \end{aligned}$$

for all \(h\in \mathbb {R}^n\) and \(\tau <0\). Assume also that

$$\begin{aligned}{}[w]_{C_{t,x}^{\frac{\beta }{2s},\beta }(Q_R)}\le CR^{\alpha +s} \end{aligned}$$
(5.1)

for all \(R\ge 1\). Then

$$\begin{aligned} w(t,x)=at+x^TAx+p\cdot x+q \end{aligned}$$

for some \(p\in \mathbb {R}^n\) and \(a,q\in \mathbb {R}\). Moreover, if \(\alpha +\beta <s\) then \(a=0\), if \(\alpha +\beta +s<2\) then \(A=0\), and if \(\alpha +\beta +s<1\) then \(p=0\).

Proof

Let \(\rho >0\) and define

$$\begin{aligned} v(t,x)=\frac{w(\rho ^{2s}(t+\tau ),\rho (x+h))-w(\rho ^{2s}t,\rho x)}{\rho ^{\alpha +s}(|\rho \tau |^{\beta /2s}+|\rho h|^{\beta })}. \end{aligned}$$

Note that

$$\begin{aligned} \partial _tv-Lv=0 \end{aligned}$$

in \(Q_1\) and, by (5.1),

$$\begin{aligned} \Vert v\Vert _{L^{\infty }(Q_R)}\le CR^{\alpha +s} \end{aligned}$$

for all \(R\ge 1\) and in particular

$$\begin{aligned} \Vert v\Vert _{L^{\infty }(Q_1)}\le C. \end{aligned}$$

Then, by the interior estimates of Theorem 1.3 in [13] with can get, for \(\theta >\alpha +s\)

$$\begin{aligned} \Vert v\Vert _{C_{t,x}^{\theta /2s,\theta }(Q_{1/2})}\le C. \end{aligned}$$

Hence, the incremental quotients of order \(\beta \) of w are uniformly bounded in \(C_{t,x}^{\theta /2s,\theta }\). This implies (see [8], Lemma 5.6) \(w\in C_{t,x}^{\frac{\theta +\beta }{2s},\theta +\beta }\) and scaling back we get

$$\begin{aligned}{}[w]_{C_{t,x}^{\frac{\alpha +\beta +s}{2s},\alpha +\beta +s}(Q_\rho )}\le [w]_{C_{t,x}^{\frac{\theta +\beta }{2s},\theta +\beta }(Q_\rho )}\le \rho ^{\alpha +s-\theta } \end{aligned}$$

and when we let \(\rho \rightarrow \infty \) we get

$$\begin{aligned}{}[w]_{C_{t,x}^{\frac{\alpha +\beta +s}{2s},\alpha +\beta +s}((-\infty ,0)\times \mathbb {R}^n)}=0. \end{aligned}$$

This gives the desired result. \(\square \)

The next proposition is the main tool to prove Proposition 4.1.

Proposition 5.2

Let \(s\in (0,1)\), \(\gamma \in (0,s)\), \(\beta \in (\gamma ,1)\) and \(\alpha =s+\gamma -\beta \in (0,s)\). Let w be a solution of

$$\begin{aligned} \partial _tw-Lw=f\quad \text { in } Q_1 \end{aligned}$$

with L an operator of the form (1.2). Assume \(w\in C^{\frac{\beta }{2s},\beta }_{t,x}((-\infty ,0)\times \mathbb {R}^n)\), \(a\in C^{1,\gamma }(S^{n-1})\) and \(f\in C^{\frac{\gamma }{2s},\gamma }_{t,x}(Q_1)\). Then

$$\begin{aligned} \sup _{r>0} r^{-\alpha -s}[w-(a_rt+x^TA_r x+p_r\cdot x+q_r)]_{C_{t,x}^{\frac{\beta }{2s},\beta }(Q_r)}\le C [w]_{C_{t,x}^{\frac{\beta }{2s},\beta }((-\infty ,0)\times \mathbb {R}^n)} \end{aligned}$$
(5.2)

where

$$\begin{aligned} a_rt+x^TA_r x+p_r\cdot x+q_r=\arg \min _{\mathcal {P}}\int _{-r^{2s}}^0\int _{B_r}(w-(at+x^TAx+p\cdot x+q))^2\,dxdt. \end{aligned}$$
(5.3)

where \(\mathcal {P}\) is the space of all polynomials of degree at most \(\lfloor (\alpha +\beta +s)/2s\rfloor \) in t and \(\lfloor \alpha +\beta +s\rfloor \) in x (i.e., and \(a_r=0\) if \(\alpha +\beta <s\), \(A_r=0\) if \(\alpha +\beta +s<2\), and \(p_r=0\) if \(\alpha +\beta +s<1\)).

In particular

$$\begin{aligned}{}[w]_{C_{t,x}^{\frac{\alpha +\beta +s}{2s},\alpha +\beta +s}(Q_{1/2})}\le C[w]_{C_{t,x}^{\frac{\beta }{2s},\beta }((-\infty ,0)\times \mathbb {R}^n)}. \end{aligned}$$
(5.4)

Proof

The proof is similar to that of Proposition 3.3. Assume (5.2) does not hold. Then there are sequences \(w_k\), \(L_k\) and \(f_k\) satisfying:

  • \(L_k\) is of the form (1.2) and \(a_k\in C^{1,\gamma }(S^{n-1})\)

  • \(w_k\in C_{t,x}^{\beta /2s,\beta }((-\infty ,0)\times \mathbb {R}^n)\) and \(f_k\in C_{t,x}^{\gamma /2s,\gamma }(Q_1)\)

  • \(w_k\) is a solution of

    $$\begin{aligned} \partial _tw_k-L_kw_k=f_k\quad \text { in } Q_1 \end{aligned}$$
    (5.5)

such that

$$\begin{aligned} \sup _k\,\sup _{r>0}\,r^{-\alpha -s}[w_k-(a_{r,k}t+x^TA_{r,k}x+p_{r,k}\cdot x+q_{r,k})]_{C_{t,x}^{\beta /2s,\beta }(Q_r)}=\infty . \end{aligned}$$

with

$$\begin{aligned} a_{r,k}t+x^TA_{r,k}x+p_{r,k}\cdot x+q_{r,k}=\arg \min _{\mathcal {P}}\int _{-r^{2s}}^0\int _{B_r}(w_k-(at+x^TAx+p\cdot x+q))^2\,dxdt. \end{aligned}$$

Define

$$\begin{aligned} \theta (r):=\sup _k\,\sup _{r'>r} (r')^{-\alpha -s}[w_k-(a_{r',k}t+x^TA_{r',k}x+p_{r',k}\cdot x+q_{r',k})]_{C_{t,x}^{\frac{\beta }{2s},\beta }(Q_{r'})}. \end{aligned}$$

As before, \(\theta \) is a nondecreasing function of r that goes to \(\infty \) as r goes to 0. Moreover, since for any fixed r we have \(\theta (r)<\infty \), if we take the sequence 1 / m there are \(r'_m\) and \(k_m\) such that \(r'_m\ge 1/m\) and

$$\begin{aligned} (r_m')^{-\alpha -s}[w_{k_m}-(a_{r_m',k_m}t+x^TA_{r_m',k_m}x+p_{r_m',k_m}\cdot x+q_{r_m',k_m})]_{C_{t,x}^{\beta /2s,\beta }(Q_{r_m'})}\ge \frac{1}{2}\theta (1/m)\ge \frac{1}{2}\theta (r'_m). \end{aligned}$$

Let’s denote

$$\begin{aligned} w_m=w_{k_m} \quad A_m=A_{r_m',k_m} \quad p_m=p_{r_m',k_m} \quad q_m=q_{r_m',k_m} \quad a_m=a_{r_m',k_m} \end{aligned}$$

to make the notation cleaner, and further denote

$$\begin{aligned} P_{r,m}(t,x)=a_mr^{2s}t+x^TA_mxr^2+p_m\cdot rx+q_m. \end{aligned}$$

With this notation we define the blow-up sequence

$$\begin{aligned} v_m(t,x)=\frac{w_m((r'_m)^{2s}t,r'_mx)-P_{r'_m,m}(t,x)}{(r'_m)^{\alpha +\beta +s}\theta (r'_m)}. \end{aligned}$$

Notice that

$$\begin{aligned}{}[v_m]_{C_{t,x}^{\beta /2s,\beta }(Q_1)}\ge 1/2 \end{aligned}$$
(5.6)

and that

$$\begin{aligned} \int _{-1}^0\int _{B_1}v_m(at+x^TAx+p\cdot x+q)\,dx\,dt=0 \end{aligned}$$
(5.7)

for all \(A\in \mathbb {R}^{n\times n}\), \(p\in \mathbb {R}^n\) and \(a,q\in \mathbb {R}\) because of the minimization condition (5.3).

Next we show that

$$\begin{aligned}{}[v_m]_{C^{\beta /2s,\beta }(Q_R)}\le CR^{\alpha +s} \end{aligned}$$
(5.8)

for any \(R\ge 1\). As before, this requires an estimate of the form

$$\begin{aligned}{}[P_{Rr'_m,m}-P_{r'_m,m}]_{C_{t,x}^{\beta /2s,\beta }(Q_{Rr'_m})}\le \theta (r'_m)(Rr_m')^{\alpha +s}. \end{aligned}$$
(5.9)

The only difference between the proof (5.9) and (3.10) is the presence of a quadratic term so, to keep the presentation clear, let us assume for simplicity that the linear terms vanish and prove the bound for the quadratic term.

Hence, proceeding dyadically as in Proposition 3.3, we have to show that

$$\begin{aligned}{}[x^TA_{2^kr'_m,m}x-x^TA_{r'_m,m}x]_{C_{t,x}^{\beta /2s,\beta }(Q_{Rr'_m})}\le C\theta (r'_m)(Rr_m')^{\alpha +s}. \end{aligned}$$

Let us start with \(k=1\) and noticing that

$$\begin{aligned}&\frac{1}{(r'_m)^{\alpha +s}\theta (r'_m)}|x^T(A_{2r'_m,m}-A_{r'_m,m})x|(r'_m)^{2-\beta }\\&\quad \le \frac{1}{(r'_m)^{\alpha +s}\theta (r'_m)}[x^TA_{2r'_m,m}x-x^TA_{r'_m,m}x]_{C_{t,x}^{\beta /2s,\beta }(Q_{r'_m})}\\&\quad \le \frac{2^{\alpha +s}\theta (2r'_m)}{\theta (r'_m)}\frac{[w_m-x^TA_{2r'_m,m}x]_{C_{t,x}^{\beta /2s,\beta }(Q_{2r'_m})}}{(2r'_m)^{\alpha +s}\theta (2r'_m)}\\&\qquad \frac{1}{(r'_m)^{\alpha +s}\theta (r'_m)}[w_m-x^TA_{r'_m,m}x]_{C_{t,x}^{\beta /2s,\beta }(Q_{r'_m})} \\&\quad \le C \end{aligned}$$

so that, denoting by \(\Vert \cdot \Vert \) is the \(L^2\) matrix norm, i.e. \(\Vert M\Vert =\sup _{|x|=1}|x^TMx|\) and taking supremum over x

$$\begin{aligned} \Vert A_{2r'_m,m}-A_{r'_m,m}\Vert \le C(r'_m)^{\alpha +\beta +s-2}\theta (r'_m). \end{aligned}$$

But on the other hand,

$$\begin{aligned}{}[x^TA_{2r'_m,m}x-x^TA_{r'_m,m}x]_{C_{t,x}^{\beta /2s,\beta }(Q_{2r'_m})}\le C\Vert A_{2r'_m,m}-A_{r'_m,m}\Vert (r'_m)^{2-\beta } \end{aligned}$$

so the result follows in this case. For \(R=2^k\) just use a telescopic sum as in Proposition 3.3.

Using (5.9) we have

$$\begin{aligned}{}[v_m]_{C_{t,x}^{\beta /2s,\beta }(Q_R)}= & {} \frac{1}{(r'_m)^{\alpha +s}\theta (r'_m)}[w_m-P_{r'_m,m}]_{C_{t,x}^{\beta /2s, \beta }(Q_{Rr'_m})}\\= & {} \frac{R^{\alpha +s}}{(Rr'_m)^{\alpha +s}\theta (r'_m)} [w_m-P_{r'_m,m}]_{C_{t,x}^{\beta /2s,\beta }(Q_{Rr'_m})} \\\le & {} \frac{R^{\alpha +s}}{(Rr'_m)^{\alpha +s}\theta (r'_m)} [w_m-P_{Rr'_m,m}]_{C_{t,x}^{\beta /2s,\beta }(Q_{Rr'_m})}\\&+\,\frac{R^{\alpha +s}}{(Rr'_m)^{\alpha +s}\theta (r'_m)}[P_{Rr'_m,m} -P_{r'_m,m}]_{C_{t,x}^{\beta /2s,\beta }(Q_{Rr'_m})} \\\le & {} \frac{R^{\alpha +s}\theta (Rr'_m)}{\theta (r'_m)}+C\frac{R^{\alpha +s}}{(Rr'_m)^{\alpha +s}\theta (r'_m)}(Rr'_m)^{\alpha +s}\theta (r'_m)\\\le & {} CR^{\alpha +s} \end{aligned}$$

and we get (5.8). From (5.8) the bound

$$\begin{aligned} \Vert v_m\Vert _{L^\infty {(Q_R)}}\le CR^{\alpha +\beta +s} \end{aligned}$$
(5.10)

follows as in Proposition 3.3.

By the Arzelà–Ascoli theorem, (5.8) and (5.10) imply that a subsequence of \(\{v_m\}_m\) converges uniformly on compact subsets of \((-\infty ,0)\times \mathbb {R}^n\) to a uniformly continuous function v. Let’s check that v satisfies the hypotheses of Lemma 5.1. As in Proposition 3.3 we have

$$\begin{aligned} (\partial _t-L_{k_m})(v_m(t+\tau ,x+h)-v_m(t,x))\longrightarrow 0 \end{aligned}$$

as \(m\rightarrow \infty \) (notice that the quadratic term can only appear when \(s>1/2\) and in this case the operator is well defined on linear functions and vanishes identically). So, again using Lemma 3.1

$$\begin{aligned} (\partial _t-L)(v(t+\tau ,x+h)-v(t,x))=0 \end{aligned}$$

for some L of the form (1.2). Finally, because of (5.8), v also satisfies the growth condition of Lemma 5.1. Hence

$$\begin{aligned} v(t,x)=at+x^TAx+p\cdot x+q, \end{aligned}$$

and by (5.7) we obtain \(v\equiv 0\). But passing to the limit in (5.6) we get a contradiction, so (5.2) holds. The fact that (5.2) implies (5.4) is quite standard. \(\square \)

Proof of Proposition 4.1

Fix \(r>0\) and consider the following rescaling of w:

$$\begin{aligned} \tilde{w}(t,x)=\frac{1}{r^{\alpha +\beta +s}}w(r^{2s}t,rx). \end{aligned}$$

Then \(\tilde{w}\) will satisfy

$$\begin{aligned} \Vert \tilde{w}\Vert _{L^\infty ((-\infty ,0)\times \mathbb {R}^n)}<\infty \quad \text { and } \Vert \tilde{w}\Vert _{L^\infty (Q_R)}\le CR^{\alpha +\beta +s}. \end{aligned}$$

Let now \(\eta \) be a cut-off function in space that vanishes outside \(B_1(e_n)\). More precisely, let \(\eta \in C^\infty _c(B_1(e_n))\) with \(\eta \equiv 1\) in \(B_{5/6}(e_n)\). Notice that \(\tilde{w}\eta \) satisfies an equation like the one in Proposition 5.2. Indeed, because \(a\in C^{1,\gamma }(S^{n-1})\) we have that,

$$\begin{aligned} \partial _t\tilde{w\eta }-L\tilde{w}\eta =\tilde{f}\quad \text { in }\quad (-1,0)\times B_{3/4}(e_n) \end{aligned}$$

and hence (5.4) gives (recall \(\tilde{w}=\tilde{w}\eta \) in \(B_{1/2}\))

$$\begin{aligned}{}[\tilde{w}]_{C_{t,x}^{\frac{\alpha +\beta +s}{2s},\alpha +\beta +s}((-1,0)\times B_{1/2}(e_n))}\le C[\tilde{w}]_{C_{t,x}^{\frac{\beta }{2s},\beta }((-1,0)\times B_1(e_n))}, \end{aligned}$$

and in particular also

$$\begin{aligned}{}[\tilde{w}]_{C_{t,x}^{\frac{\alpha +\beta }{2s},\alpha +\beta }((-1,0)\times B_{1/2}(e_n))}\le C[\tilde{w}]_{C_{t,x}^{\frac{\beta }{2s},\beta }((-1,0)\times B_1(e_n))}. \end{aligned}$$

Rescaling this estimate back we get

$$\begin{aligned}{}[w]_{C_{t,x}^{\frac{\alpha +\beta +s}{2s},\alpha +\beta +s}((-r^{2s},0)\times B_{r/2}(e_n))}\le r^{-\alpha -s}C[w]_{C_{t,x}^{\frac{\beta }{2s},\beta }((-1,0)\times B_r(e_n))}\le Cr^{-\alpha -s}r^{s+\alpha }=C \end{aligned}$$

and

$$\begin{aligned}{}[w]_{C_{t,x}^{\frac{\alpha +\beta }{2s},\alpha +\beta }((-r^{2s},0)\times B_{r/2}(e_n))}\le r^{-\alpha }C[w]_{C_{t,x}^{\frac{\beta }{2s},\beta }((-1,0)\times B_r(e_n))}\le Cr^{-\alpha }r^{s+\alpha }=Cr^s, \end{aligned}$$

as wanted.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ros-Oton, X., Vivas, H. Higher-order boundary regularity estimates for nonlocal parabolic equations. Calc. Var. 57, 111 (2018). https://doi.org/10.1007/s00526-018-1399-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1399-6

Mathematics Subject Classification

Navigation