Skip to main content
Log in

Infinitely many sign-changing solutions of a critical fractional equation

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

In this paper, we obtain results of nonexistence of nonconstant positive solutions, and also existence of an unbounded sequence of sign-changing solutions for some critical problems involving conformally invariant operators on the unit sphere, in particular to the fractional Laplacian operator in the Euclidean space. Our arguments are based on a reduction of the initial problem in the Euclidean space to an equivalent problem on the standard unit sphere and vice versa, what together with blow up arguments, a variant of Pohozaev’s type identity, a refinement of regularity results for this type operators, and finally, by exploiting the symmetries of the sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abreu, E., Barbosa, E., Ramirez, J.: Uniqueness for the brezis-nirenberg type problems on spheres and hemispheres. (2019). arXiv:1906.09851

  2. Aubin, T.: Nonlinear analysis on manifolds. Monge-Ampère equations. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252. Springer, New York, (1982)

  3. Bartsch, T., Schneider, M., Weth, T.: Multiple solutions of a critical polyharmonic equation. J. Reine Angew. Math. 571, 131–143 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Bartsch, T., Willem, M.: Infinitely many non-radial solutions of a Euclidean scalar field equation. J. Funct. Anal. 117(2), 447–460 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beckner, W.: Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Ann. Math. 138(1), 213–242 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bidaut-Véron, M.-F., Véron, L.: Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations. Invent. Math. 106(3), 489–539 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Biliotti, L., Siciliano, G.: A group theoretic proof of a compactness lemma and existence of nonradial solutions for semilinear elliptic equations. (2020). arXiv:2002.01333

  8. Branson, T.P.: Sharp inequalities, the functional determinant, and the complementary series. Trans. Am. Math. Soc. 347(10), 3671–3742 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brezis, H., Li, Y.: Some nonlinear elliptic equations have only constant solutions. J. Part. Differ. Equ. 19(3), 208–217 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Part. Differ. Equ. 32(7–9), 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Caffarelli, L.A., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Commun. Pure Appl. Math. 42(3), 271–297 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chang, S.-Y.A., González, M.D.M.: Fractional Laplacian in conformal geometry. Adv. Math. 226(2), 1410–1432 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chang, X., Wang, Z.-Q.: Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian. J. Differ. Equ. 256(8), 2965–2992 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, W., Li, C.: Classification of positive solutions for nonlinear differential and integral systems with critical exponents. Acta Math. Sci. Ser. B (Engl. Ed.) 29(4), 949–960 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Chen, W., Li, C., Ou, B.: Classification of solutions for an integral equation. Commun. Pure Appl. Math. 59(3), 330–343 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Choi, W., Kim, S.: On perturbations of the fractional Yamabe problem. Calc. Var. Part. Differ. Equ. 56(1), 46 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cotsiolis, A., Tavoularis, N.K.: Best constants for Sobolev inequalities for higher order fractional derivatives. J. Math. Anal. Appl. 295(1), 225–236 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Damascelli, L., Gladiali, F.: Some nonexistence results for positive solutions of elliptic equations in unbounded domains. Rev. Mat. Iberoamericana 20(1), 67–86 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhikers guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ding, W.Y.: On a conformally invariant elliptic equation on \({ R}^n\). Commun. Math. Phys. 107(2), 331–335 (1986)

    Article  MATH  Google Scholar 

  21. Dolbeault, J., Esteban, M.J., Loss, M.: Nonlinear flows and rigidity results on compact manifolds. J. Funct. Anal. 267(5), 1338–1363 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68(3), 209–243 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Commun. Pure Appl. Math. 34(4), 525–598 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  24. González, M. D. M.: Recent progress on the fractional Laplacian in conformal geometry. In: Recent Developments in Nonlocal Theory, pp. 236–273. De Gruyter, Berlin (2018)

  25. González, M.D.M., Qing, J.: Fractional conformal Laplacians and fractional Yamabe problems. Anal. PDE 6(7), 1535–1576 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Graham, C.R., Jenne, R., Mason, L.J., Sparling, G.A.J.: Conformally invariant powers of the Laplacian. I. Existence. J. Lond. Math. Soc. 46(3), 557–565 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Graham, C.R., Zworski, M.: Scattering matrix in conformal geometry. Invent. Math. 152(1), 89–118 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Guidi, C., Maalaoui, A., Martino, V.: Palais-Smale sequences for the fractional CR Yamabe functional and multiplicity results. Calc. Var. Part. Differ. Equ. 57(6), 27 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Guo, Y., Liu, J.: Liouville-type theorems for polyharmonic equations in \({\mathbb{R}}^N\) and in \({\mathbb{R}}_+^N\). Proc. R. Soc. Edinburgh Sect. A 138(2), 339–359 (2008)

    Article  MATH  Google Scholar 

  30. Hebey, E.: Compactness and stability for nonlinear elliptic equations. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2014)

  31. Hebey, E., Vaugon, M.: Sobolev spaces in the presence of symmetries. J. Math. Pures Appl. 76(10), 859–881 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jin, T., Li, Y., Xiong, J.: On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions. J. Eur. Math. Soc. (JEMS) 16(6), 1111–1171 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jin, T., Li, Y., Xiong, J.: The Nirenberg problem and its generalizations: a unified approach. Math. Ann. 369(1–2), 109–151 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jin, T., Li, Y.Y., Xiong, J.: On a fractional Nirenberg problem, Part II: Existence of solutions. Int. Math. Res. Not. IMRN 2015(6), 1555–1589 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Jin, T., Xiong, J.: A fractional Yamabe flow and some applications. J. Reine Angew. Math. 696, 187–223 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Kristály, A.: Nodal solutions for the fractional Yamabe problem on Heisenberg groups. Proc. R. Soc. Edinburgh Sect. A 150(2), 771–788 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, Y., Zhu, M.: Yamabe type equations on three-dimensional Riemannian manifolds. Commun. Contemp. Math. 1(1), 1–50 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Licois, J.R., Véron, L.: A class of nonlinear conservative elliptic equations in cylinders. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26(2), 249–283 (1998)

    MathSciNet  MATH  Google Scholar 

  39. Lin, C.-S.: A classification of solutions of a conformally invariant fourth order equation in \({ R}^n\). Comment. Math. Helv. 73(2), 206–231 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lin, C.S., Ni, W.-M.: On the diffusion coefficient of a semilinear Neumann problem. In: Calculus of variations and partial differential equations (Trento, 1986), vol 1340 of Lecture Notes in Mathematics, pp. 160–174. Springer, Berlin (1988)

  41. Maalaoui, A.: Infinitely many solutions for the spinorial Yamabe problem on the round sphere. NoDEA Nonlinear Differ. Equ. Appl. 23(3), 14 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Morpurgo, C.: Sharp inequalities for functional integrals and traces of conformally invariant operators. Duke Math. J. 114(3), 477–553 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Niu, M., Peng, Z., Xiong, J.: Compactness of solutions to nonlocal elliptic equations. J. Funct. Anal. 275(9), 2333–2372 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Palais, R.S.: The principle of symmetric criticality. Commun. Math. Phys. 69(1), 19–30 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pavlov, P.M., Samko, S.G.: Description of spaces \(L^{\alpha }_{p}(S_{n-1})\) in terms of spherical hypersingular integrals. Dokl. Akad. Nauk SSSR 276(3), 546–550 (1984)

    MathSciNet  Google Scholar 

  46. Santamaría, V.-H., Saldaña, A.: Existence and convergence of solutions to fractional pure critical exponent problems. (2021). arXiv:2102.08546

  47. Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton (1970)

  48. Strichartz, R.S.: Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal. 52(1), 48–79 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tang, X., Xu, G., Zhang, C., Zhang, J.: Entire sign-changing solutions to the fractional critical schrodinger equation. (2020). arXiv:2008.02119

  50. Triebel, H.: Spaces of Besov–Hardy–Sobolev type on complete Riemannian manifolds. Ark. Mat. 24(2), 299–337 (1986)

    MathSciNet  MATH  Google Scholar 

  51. Wei, J., Xu, X.: Classification of solutions of higher order conformally invariant equations. Math. Ann. 313(2), 207–228 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  52. Yu, X.: Liouville type theorems for integral equations and integral systems. Calc. Var. Part. Differ. Equ. 46(1–2), 75–95 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezequiel Barbosa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This study was financed by the Brazilian agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)

Appendix

Appendix

1.1 Sobolev type spaces and conformally invariant operators on the unit sphere

In this subsection, we recall some results for \(P_s\) and Bessel potential spaces on spheres which can be found in [8, 42, 45, 48, 50].

The operator \(P_s\) has as eigenfunctions, the spherical harmonic functions. Let \(Y^{(k)}\) be a spherical harmonic function of degree \(k\ge 0\). Then for \(s\in (0,n/2)\), we have

$$\begin{aligned} P_s(Y^{(k)})=\frac{\Gamma (k+\frac{n}{2}+s)}{\Gamma (k+\frac{n}{2}-s)} Y^{(k)},~ R_s(Y^{(k)})=\frac{\Gamma (\frac{n}{2}+s)}{\Gamma (\frac{n}{2}-s)} Y^{(k)}, \end{aligned}$$

and, for each \(u\in H^s({\mathbb {S}},g_{{\mathbb {S}}^n})\) with \(u=\sum _{k}b_kY^{(k)}\), we obtain

$$\begin{aligned} \int _{{\mathbb {S}}^n}(u-{\overline{u}})(P_s-R_s)(u-{\overline{u}}){\mathrm {d}}\vartheta _{g_{{\mathbb {S}}^n}}=\sum _{k=1}^{\infty }\left[ \frac{\Gamma (k+\frac{n}{2}+s)}{\Gamma (k+\frac{n}{2}-s)}-\frac{\Gamma (\frac{n}{2}+s)}{\Gamma (\frac{n}{2}-s)}\right] \int _{{\mathbb {S}}^n}|b_kY^{(k)}|^2{\mathrm {d}}\vartheta _{g_{{\mathbb {S}}^n}} \end{aligned}$$

and therefore \(\lambda _{1,s,g_{{\mathbb {S}}^n}}>0\).

If \(g\in [{\mathbb {S}}^n]\) is a conformal metric on \({\mathbb {S}}^n\), then \((P^g_s)^{-1}\), acting in \(L^2({\mathbb {S}}^n,g)\), is compact, self-adjoint and positive [, Proposition 2.3]. Consequently, 42\(P^g_s\) admits an unbounded sequence of eigenvalues depending on g. On the other hand, the existence of eigenvalues for the operator \(P^g_s - R^g_s\) was shown in [, Appendix] for the case 1\(s\in (0,1)\). We believe that (1.5) holds for \(s>1\).

Let \(\Delta _{g_{{\mathbb {S}}^n}}\) be the Laplace–Beltrami operator on \(({\mathbb {S}}^n,g_{{\mathbb {S}}^n})\). For \(s>0\) and \(1<p<\infty\), the Bessel potential space \(H^s_p({\mathbb {S}}^n)\) is the set consisting of all \(u\in L^p({\mathbb {S}}^n)\) such that \((1-\Delta )^{\frac{s}{2}}u\in L^p({\mathbb {S}}^n)\). The norm in \(H^s_p({\mathbb {S}}^n)\) is defined by

$$\begin{aligned} \Vert u\Vert _{H^s_p({\mathbb {S}}^n)}:=\Vert (1-\Delta _{g_{{\mathbb {S}}^n}})^{\frac{s}{2}}u\Vert _{L^p({\mathbb {S}}^n)}. \end{aligned}$$

When \(p=2\), then \(H^s_2({\mathbb {S}}^n)\) coincides with \(H^s({\mathbb {S}},g_{{\mathbb {S}}^n})\), and the norms \(\Vert \cdot \Vert _{H^s_p({\mathbb {S}}^n)}\) and \(\Vert \cdot \Vert _{s,g_{{\mathbb {S}}^n}}\) are equivalent. Recall that \(H^s({\mathbb {S}}^n,g)\) denotes the closure of \(C^{\infty }({\mathbb {S}}^n)\) under the norm

$$\begin{aligned} \Vert u\Vert ^2_{s,g} := \int _{{\mathbb {S}}^n} uP^g_su~{\mathrm {d}}\vartheta _g. \end{aligned}$$

Theorem 5.1

  1. (i)

    If \(sp<n\), then the embedding \(H^s_p({\mathbb {S}}^n)\hookrightarrow L^{q}({\mathbb {S}}^n)\) is continuous for \(1\le q \le np/(n-sp)\) and compact for \(q<np/(n-sp)\).

  2. (ii)

    If \(s\in {\mathbb {N}}\), then \(H^s_p({\mathbb {S}}^n)=W^{s,p}({\mathbb {S}}^n, g_{{\mathbb {S}}^n})\).

  3. (iii)

    If \(s=k+s_0\) with \(k\in {\mathbb {N}}\) and \(s_0\in (0,1)\), then the embedding \(H^s({\mathbb {S}},g) \hookrightarrow W^{k,\frac{2n}{n-2s_0}}({\mathbb {S}}^n,g)\) is continuous.

Proof

The proof of (i) and (ii) can be found in the reference cited at the beginning of this section. For the proof of (iii), we use (1.1) and [5, Theorem 6] to obtain

$$\begin{aligned} \begin{aligned} \int _{{\mathbb {S}}^n}uP^g_s u~{\mathrm {d}}\vartheta _g&\ge C\Vert (1-\Delta _{g_{{\mathbb {S}}^n}})^{\frac{s}{2}}(\varphi u)\Vert _{L^2({\mathbb {S}}^n)}\\&=C\Vert (1-\Delta _{g_{{\mathbb {S}}^n}})^{\frac{s_0}{2}}(1-\Delta _{g_{{\mathbb {S}}^n}})^{\frac{k}{2}}(\varphi u)\Vert _{L^2({\mathbb {S}}^n)}\\&\ge C\Vert (1-\Delta _{g_{{\mathbb {S}}^n}})^{\frac{k}{2}}(\varphi u)\Vert _{L^{\frac{2n}{n-2s_0}}({\mathbb {S}}^n)}\\&\ge C \Vert \varphi u\Vert _{W^{k,\frac{2n}{n-2s_0}}({\mathbb {S}}^n)} \end{aligned} \end{aligned}$$

for all \(u\in C^{\infty }({\mathbb {S}}^n)\). \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abreu, E., Barbosa, E. & Ramirez, J.C. Infinitely many sign-changing solutions of a critical fractional equation. Annali di Matematica 201, 861–901 (2022). https://doi.org/10.1007/s10231-021-01141-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-021-01141-2

Keywords

Mathematics Subject Classification

Navigation