Skip to main content
Log in

Existence and uniqueness for a class of nonlinear elliptic equations with measure data

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

We study existence and uniqueness of Radon measure-valued solutions for a class of nonlinear elliptic equations in inhomogeneous media. Solutions are constructed by a regularization procedure which relies on a standard approximation of the measure data and satisfy both a persistence property and a compatibility condition prescribing the structure of their concentrated and diffuse parts with respect to a suitable capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreu, F., Igbida, N., Mazon, J.M., Toledo, J.: Degenerate elliptic equations with nonlinear boundary conditions and measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 8(4), 767–803 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Ball, J.M.: A version of the fundamental theorem for Young measures, Partial Differential Equations and Continuum Models of Phase Transitions (Proceedings of an NSF-CNRS joint seminar). Springer-Verlag, Berlin (1989)

    Google Scholar 

  3. Baras, P., Pierre, M.: Singularités éliminables pour des équations semilinéaires. Ann. Inst. Fourier 34, 185–206 (1984)

    Article  MathSciNet  Google Scholar 

  4. Bartolucci, D., Leoni, F., Orsina, L., Ponce, A.C.: Semilinear equations with exponential nonlinearity and measure data. Ann. Inst. H. Poincaré Anal. Non Lineaire 22, 799–815 (2005)

    Article  MathSciNet  Google Scholar 

  5. Bénilan, Ph., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vasquez, J.L.: An \(L^1\)-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22, 241–273 (1995)

    MathSciNet  MATH  Google Scholar 

  6. Bénilan, Ph., Brezis, H.: Nonlinear problems related to the Thomas-Fermi equation. J. Evol. Equ. 3, 673–770 (2004)

    Article  MathSciNet  Google Scholar 

  7. Bénilan, Ph., Brezis, H., Crandall, M.: A semilinear equation in \(L^1(R^N)\). Annali Scu. Norm. Pisa, Cl. di Scienze 2, 523–555 (1975)

  8. Boccardo, L.: On the regularizing effect of strongly increasing lower order terms. J. Evol. equ. 3, 225–236 (2003)

    Article  MathSciNet  Google Scholar 

  9. Boccardo, L., Gallouët, T.: Nonlinear elliptic and parabolic equations involving measure data. J. Func. Anal. 87, 241–273 (1989)

    Article  MathSciNet  Google Scholar 

  10. Boccardo, L., Gallouët, T.: Nonlinear elliptic equations with right hand side a measure. Commun. Partial Differ. Equ. 17, 641–655 (1992)

    Article  MathSciNet  Google Scholar 

  11. Boccardo, L., Gallouët, T., Orsina, L.: Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data. Ann. Inst. H. Poincaré 13, 539–551 (1996)

    Article  MathSciNet  Google Scholar 

  12. Brezis, H.: Some Variational problems of the Thomas-Fermi type, Variational inequalities and complementarity problems (Proc. Internat. School, Erice, 1978), 53-73 (1980)

  13. Brezis, H., Browder, F.E.: Strongly nonlinear elliptic boundary value problems. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5, 587–603 (1978)

    MathSciNet  MATH  Google Scholar 

  14. Brezis, H., Marcus, M., Ponce, A.C.: Equations, nonlinear elliptic, with measures revisited. Mathematical aspects of nonlinear dispersive equations. Ann. Math. Stud. 163, 55–109 (2007)

    MATH  Google Scholar 

  15. Brezis, H., Ponce, A.C.: Reduced measures for obstacle problems. Adv. Differ. Equ. 10, 1201–1234 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Brezis, H., Strauss, W.A.: Semilinear secon-order elliptic equations in \(L^1\). J. Math. Soc. Japan 25, 565–590 (1973)

    Article  MathSciNet  Google Scholar 

  17. Brezis, H., Veron, L.: Removable singularities for some nonlinear elliptic equations. Arch. for Rat. Mech. and Ana. 75, 1–6 (1980)

    Article  MathSciNet  Google Scholar 

  18. Dal Maso, G., Murat, F., Orsina, L., Prignet, A.: Renormalized solutions for elliptic equations with general measure data. Ann. Scuola Normale Sup. Pisa Cl. Sci. 28, 741–808 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Dupaigne, L., Ponce, A.C., Porretta, A.: Elliptic equations with vertical asymptotes in the nonlinear term. J. Anal. Math. 98, 349–396 (2006)

    Article  MathSciNet  Google Scholar 

  20. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. CRC Press, Florida (1992)

    MATH  Google Scholar 

  21. Fukushima, M., Sato, K., Taniguchi, S.: On the closable part of pre-Dirichlet forms and the fine support of the underlying measures. Osaka J. Math. 28, 517–535 (1991)

    MathSciNet  MATH  Google Scholar 

  22. Gallouet, T., Morel, J.-M.: Resolution of a semilinear equation in \(L^1\). Proc. Roy. Soc. Edinburgh Sect. A 96, 275–288 (1984)

    Article  MathSciNet  Google Scholar 

  23. Igbida, N., Ouaro, S., Soma, S.: Elliptic problem involving diffuse measure. J. Differ. Equ. 253, 3159–3183 (2012)

    Article  MathSciNet  Google Scholar 

  24. Leray, J., Lions, J.-L.: Quelques resultats de Visik sur les problemes elliptiques non lineaires per les methodes de Minty-Browder. Bulletin de la S.M.F. 93, 97–107 (1965)

    MATH  Google Scholar 

  25. Lieb, E.H., Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23(1), 22–116 (1977)

    Article  MathSciNet  Google Scholar 

  26. Orsina, L., Ponce, A.C.: Semilinear elliptic equations and systems with diffuse measures. J. Evol. Equ. 8, 781–812 (2008)

    Article  MathSciNet  Google Scholar 

  27. Porzio, M.M.: An uniqueness result for monotone elliptic problems. C.R. Acad. Sci. Paris, Ser. I 337, 313–316 (2003)

    Article  MathSciNet  Google Scholar 

  28. Porzio, M.M., Smarrazzo, F.: Radon Measure-Valued Solutions for some quasilinear degenerate elliptic equations. Annali di Matematica Pura ed Applicata 194(2), 495–532 (2015)

    Article  MathSciNet  Google Scholar 

  29. Serrin, J.: Pathological solutions of elliptic differential equations. Ann. Scuola Norm Sup. Pisa Cl. Sci. 18, 385–387 (1964)

    MathSciNet  MATH  Google Scholar 

  30. Smarrazzo, F.: On a class of quasilinear elliptic equations with degenerate coerciveness and measure data. Adv. Nonlinear Stud. 18(2), 361–392 (2018)

    Article  MathSciNet  Google Scholar 

  31. Stampacchia, G.: Le probl\(\grave{e}\)me de Dirichlet pour les \(\grave{e}\)quations elliptiques du second ordre \(\grave{a}\) coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15(1), 189–258 (1965)

    Article  MathSciNet  Google Scholar 

  32. Valadier, M.: A course on Young measures, Rend. Ist. Mat. Univ. Trieste, 26 (1994), suppl., 349–394 (1995)

  33. Vazquez, J.L.: On a semilinear equation in \({\mathbb{R}}^2\) involving bounded measures. Proc. Roy. Soc. Edinburgh Sect. A 95, 181–202 (1983)

    Article  MathSciNet  Google Scholar 

  34. V\(\acute{\text{e}}\)ron, L.: Elliptic equations involving measures in Stationary partial differential equations . Handb. Differ. Equ., 1: 595-712 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavia Smarrazzo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Let \(\Omega \subset \mathbb {R}^N\) be a bounded open set with smooth boundary \(\partial \Omega \). In this section, besides \((H_1)\), we shall always assume that

(A):

(i) \(\phi :{\overline{\Omega }}\times \mathbb {R}\rightarrow \mathbb {R}\) is continuous, \(\phi (x,0)=0\) for every \(x\in {\overline{\Omega }}\);

(ii) for every \(x\in {\overline{\Omega }}\) the map \(\mathbb {R}\ni z\mapsto \phi (x,z)\) is strictly increasing, and

$$\begin{aligned} \lim _{z\rightarrow \pm \infty }\phi (x,z)=\pm \infty \ \,\text{ uniformly } \text{ for } x\in {\overline{\Omega }}\,. \end{aligned}$$
(A.1)

Let us consider the elliptic equation

$$\begin{aligned} \left\{ \begin{array}{rl} -\text{ div }\big (\mathbf{a}(\nabla \phi (x,u))\big )+u=f&{}\text{ in }\ \,\Omega \,,\\ u=0&{}\text{ on }\ \,\partial \Omega \,. \end{array}\right. \end{aligned}$$
(A.2)

Definition A.1

For every \(f\in L^{\infty }(\Omega )\), by a solution of (A.2), we mean any \(u\in L^{\infty }(\Omega )\) such that \(\phi (\cdot ,u)\in W^{1,p}_0(\Omega )\) and

$$\begin{aligned} \int _{\Omega }{} \mathbf{a}(\nabla \phi (x,u))\cdot \nabla \rho \,dx+\int _{\Omega }u\rho \,dx=\int _{\Omega }f\rho \,dx \end{aligned}$$
(A.3)

for all \(\rho \in W^{1,p}_0(\Omega )\).

Observe that the first term in the left-hand side of (A.3) makes sense by assumption \((H_1)\)-(i) and the condition \(\phi (\cdot ,u)\in W^{1,p}_0(\Omega )\) (see Remark 3.1).

Uniqueness of solutions of (A.2) is a consequence of the following comparison principle.

Proposition A.1

Let \(u_1,\,u_2\) be two solutions of (A.2) with data \(f_1,\,f_2\in L^{\infty }(\Omega )\), \(f_1\le f_2\) a.e. in \(\Omega \), respectively. Then \(u_1\le u_2\) a.e. in \(\Omega \).

Proof

Choosing \(\rho =[\phi (x,u_1)-\phi (x,u_2)]^+\) in the weak formulation of \(u_i\) (\(i=1,2\)) and subtracting, we obtain

$$\begin{aligned} \int _{\Omega }\big [\mathbf{a}(\nabla \phi (x,u_1))-\mathbf{a}(\nabla \phi (x,u_2))\big ]\cdot \nabla \rho \,dx+\int _{\Omega }[u_1-u_2]\,\rho \,dx=\int _{\Omega }[f_1-f_2]\,\rho \,dx\,. \end{aligned}$$
(A.4)

By \((H_1)\)-(ii) and the assumption \(f_1\le f_2\) a.e. in \(\Omega \), we get

$$\begin{aligned} \int _{\Omega }[u_1-u_2][\phi (x,u_1)-\phi (x,u_2)]^+\,dx\le 0 \,. \end{aligned}$$

In view of the strictly increasing character of the map \(z\mapsto \phi (\cdot ,z)\) (see (A)-(ii)), the previous inequality implies that \(u_1\le u_2\) a.e. in \(\Omega \). \(\square \)

Remark A.1

Let u be the solution of (A.2) with data \(f\ge 0\) a.e. in \(\Omega \) (\(f\le 0\), respectively). Since \(\mathbf{a}(0)=0\) and \(\phi (x,0)=0\) for all \(x\in \Omega \), it is immediately seen that \(v\equiv 0\) is the solution of (A.2) with data \(f=0\). Thus, from Proposition A.1, it follows that \(u\ge 0\) a.e. in \(\Omega \) (\(u\le 0\), respectively).

Proposition A.2

For every \(f\in L^{\infty }(\Omega )\), the solution u of (A.2) satisfies

$$\begin{aligned} \Vert u\Vert _{L^1(\Omega )}\le \Vert f\Vert _{L^1(\Omega )}\,. \end{aligned}$$
(A.5)

Proof

For every \(K>0\), choosing \(\rho =T_K(\phi (\cdot ,u))\) as test function in (A.3) we get

$$\begin{aligned} \alpha _0\int _{\Omega }|\nabla T_K(\phi (x,u))|^p\,dx+\int _{\Omega }u\,T_K(\phi (x,u))\,dx \le \int _{\Omega } f\,T_K(\phi (x,u)\,dx\le K\Vert f\Vert _{L^1(\Omega )} \end{aligned}$$

(here, we have also used \((H_1)\)-(i)), whence

$$\begin{aligned} \int _{\Omega }u\,\frac{T_K(\phi (x,u))}{K}\,dx \le \Vert f\Vert _{L^1(\Omega )}\,. \end{aligned}$$

Since \(\phi (x,z)>0\) for \(z>0\) and \(\phi (x,z)<0\) for \(z<0\) (recall that \(\phi (x,0)=0\) and the map \(z\mapsto \phi (x,z)\) is strictly increasing for all \(x\in \Omega \)), letting \(K\rightarrow 0^+\) in the above equality gives

$$\begin{aligned} \int _{\Omega } |u|\,dx=\lim _{K\rightarrow 0^+}\int _{\Omega }u\,\frac{T_K(\phi (x,u))}{K}\,dx \le \Vert f\Vert _{L^1(\Omega )}\,. \end{aligned}$$

\(\square \)

Let us address the existence part.

Proposition A.3

For every \(f\in L^{\infty }(\Omega )\) , there exists a solution of (A.2) in the sense of Definition A.1.

Proof

Let us consider any sequence \(\{\phi _{j}\}\subseteq C^{\infty }({\overline{\Omega }}\times \mathbb {R};\mathbb {R})\cap \mathrm{Lip}(\Omega \times \mathbb {R};\mathbb {R})\) such that

$$\begin{aligned}&\phi _{j}\rightarrow \phi \quad \text{ in }\ \,C_{\mathrm{loc}}({\overline{\Omega }}\times \mathbb {R})\ \ \text{ as } j\rightarrow \infty \,, \end{aligned}$$
(A.6)
$$\begin{aligned}&\phi _{j}(x,0)=0\quad \text{ for } \text{ every } x\in {\overline{\Omega }}\,, \end{aligned}$$
(A.7)
$$\begin{aligned}&\partial _{z}\phi _{j}(x,z)\ge \frac{1}{j}\quad \text{ for } \text{ every } (x,z)\in {\overline{\Omega }}\times \mathbb {R}\,. \end{aligned}$$
(A.8)

Applying the results in [24] with

$$\begin{aligned} \mathbf{{\tilde{a}}}(x,z,\xi )=\mathbf{a}_j(\nabla _x\phi _j(x,z)+\partial _z\phi _j(x,z)\xi ) \end{aligned}$$

(here \(\mathbf{a}_j(\xi )=\mathbf{a}(\xi )+\frac{1}{j}|\xi |^{p-2}\xi \) for \(\xi \ne 0\) and \(\mathbf{a}_j(0)=0\)), it can be easily checked that for every \(f\in L^{\infty }(\Omega )\), there exists \(u_j\in W^{1,p}_0(\Omega )\) which solves in the weak sense the elliptic equation

$$\begin{aligned} \left\{ \begin{array}{rl} -\text{ div }\big (\mathbf{a}_j(\nabla \phi _j(x,u_j))\big )+u_j=f&{}\text{ in }\ \,\Omega \,,\\ u_j=0&{}\text{ on }\ \,\partial \Omega \,. \end{array}\right. \end{aligned}$$
(A.9)

The rest of the proof is devoted to take the limit as \(j\rightarrow \infty \) in (A.9).

A priori estimates. Choosing \(\rho =\phi _j(\cdot ,u_j)\) as test function in (A.9), it easily follows from assumption \((H_1)\)–(i) that the sequence \(\{\phi _j(\cdot ,u_j)\}\) is bounded in \(W^{1,p}_0(\Omega )\). Moreover, by \((H_1)\)-(i) we obtain

$$\begin{aligned} \sup _{j\in \mathbb {N}}\int _{\Omega }|\mathbf{a}_j(\nabla \phi _j(x,u_j))|^{\frac{p}{p-1}}dx \le \sup _{j\in \mathbb {N}}\int _{\Omega } (\beta _0+1)\,|\nabla \phi _j(x,u_j)|^pdx <\infty \,. \end{aligned}$$
(A.10)

Let us also prove that

$$\begin{aligned} \{u_j\} \hbox { is bounded in } L^{\infty }(\Omega ). \end{aligned}$$
(A.11)

To this aim, let \(K_0:=\Vert f\Vert _{L^{\infty }(\Omega )}\) and set

$$\begin{aligned} M:=\max _{(x,z)\in {\overline{\Omega }}\times [-K_0,K_0]} |\phi (x,z)|\,. \end{aligned}$$

Observe that \(M>0\), and by (A.6) there exists \(j_M\in \mathbb {N}\) such that

$$\begin{aligned} \max _{(x,z)\in {\overline{\Omega }}\times [-K_0,K_0]} |\phi _j(x,z)|\le 2M\quad \text{ for } \text{ all } j\ge j_M\,. \end{aligned}$$
(A.12)

Moreover, there holds

$$\begin{aligned}&\int _{\Omega } \mathbf{a}_j(\nabla \phi _j(x,u_j))\cdot \nabla [\phi _j(x,u_j)-2M]^+\,dx + \int _{\Omega } u_j[\phi _j(x,u_j)-2M]^+\,dx \\&\quad = \int _{\Omega } f\,[\phi _j(x,u_j)-2M]^+\,dx \le K_0\int _{\Omega } [\phi _j(x,u_j)-2M]^+\,dx\,, \end{aligned}$$

whence (see \((H_1)\)-(i))

$$\begin{aligned} \alpha _0\int _{\Omega } |\nabla [\phi _j(x,u_j)-2M]^+|^p\,dx + \int _{\Omega } [u_j-K_0][\phi _j(x,u_j)-2M]^+\,dx\le 0\,. \end{aligned}$$

In view of (A.12) and since \(\phi _j(x,u_j)-2M<0\) if \(u_j<0\), from the above inequality, we infer that for all \(j\ge j_M\),

$$\begin{aligned} \int _{\{u_j\ge K_0\}} [u_j-K_0][\phi _j(x,u_j)-2M]^+\,dx = \int _{\Omega } [u_j-K_0][\phi _j(x,u_j)-2M]^+\,dx\le 0\,. \end{aligned}$$

Hence, \(\phi _j(x,u_j(x))\le 2M\) for every such j and for a.e. x such that \(u_j(x)\ge K_0\). Now let \(K>K_0\) be chosen so that \(\phi (x,K)\ge 4M\) for all \(x\in {\overline{\Omega }}\) (see (A.1)) and fix any \(j_K\in \mathbb {N}\) such that \(|\phi _j(x,K)-\phi (x,K)|<M\) for all \(x\in {\overline{\Omega }}\) and \(j\ge j_K\) (see (A.6)). If \(u_j(x)\ge K\) for some x and \(j\ge \max \{j_M,j_K\}\), we would have

$$\begin{aligned} 3M\le \phi (x,K)-M\le \phi _j(x,K)\le \phi _j(x,u_j)\le 2M\,, \end{aligned}$$

a contradiction. This proves that \(u_j\le K\) a.e. in \(\Omega \) for all j large enough. Arguing analogously, it can be easily seen that there exists \(H>0\) such that \(u_j\ge -H\) a.e. in \(\Omega \), and (A.11) follows at once.

Letting \(j\rightarrow \infty \). By the previous step, there exist \(u\in L^{\infty }(\Omega )\) and \(v\in W^{1,p}_0(\Omega )\cap L^{\infty }(\Omega )\) such that possibly up to a subsequence (not relabeled) there holds

$$\begin{aligned}&u_j{\mathop {\rightharpoonup }\limits ^{*}}u\quad \text{ in }\ \,L^{\infty }(\Omega )\,, \end{aligned}$$
(A.13)
$$\begin{aligned}&\phi _j(\cdot ,u_j)\rightharpoonup v\quad \text{ in }\ \,W^{1,p}_0(\Omega )\,, \end{aligned}$$
(A.14)
$$\begin{aligned}&\phi _j(x,u_j(x))\rightarrow v(x)\quad \text{ for } {\textit{ a.e. }} x\in \Omega \,. \end{aligned}$$
(A.15)

Moreover, since (A.6) and (A.11) ensure that \([\phi _j(\cdot ,u_j)-\phi (\cdot ,u_j)]\rightarrow 0\) a.e. in \(\Omega \), we have

$$\begin{aligned} \phi (x,u_j(x))\rightarrow v(x)\quad \text{ for } {\textit{ a.e. }} x\in \Omega \,. \end{aligned}$$
(A.16)

From the above convergence and the strictly increasing character of the map \(z\mapsto \phi (\cdot ,z)\), for a.e. \(x\in \Omega \) we get the convergence of the sequence \(\{u_j(x)\}\). Thus (see (A.13))

$$\begin{aligned} u_j\rightarrow u\quad {\textit{ a.e }}. \hbox { in } \Omega \,, \end{aligned}$$
(A.17)

and the equality \(v(x)=\phi (x,u(x))\) holds true for a.e. \(x\in \Omega \). In view of the above remarks, we also get

$$\begin{aligned} u_j\rightarrow u\quad \text{ in }\ \,L^q(\Omega )\qquad (1\le q<\infty )\,, \end{aligned}$$
(A.18)

and the convergences in (A.14)–(A.16) can be rephrased as

$$\begin{aligned}&\phi _j(\cdot ,u_j)\rightharpoonup \phi (\cdot ,u)\quad \text{ in }\ \,W^{1,p}_0(\Omega )\,, \end{aligned}$$
(A.19)
$$\begin{aligned}&\phi (x,u_j(x)),\,\phi _j(x,u_j(x))\rightarrow \phi (x,u(x))\quad \text{ for } {\textit{ a.e. }} x\in \Omega \,. \end{aligned}$$
(A.20)

By (A.18), letting \(j\rightarrow \infty \) in the weak formulation of problems (A.9), i.e.,

$$\begin{aligned} \int _{\Omega }\mathbf{a}_j(\nabla \phi _j(x,u_j))\cdot \nabla \rho \,dx+\int _{\Omega }u_j\rho \,dx=\int _{\Omega }f\rho \,dx\,, \end{aligned}$$
(A.21)

will give equality (A.3) for every \(\rho \in W^{1,p}_0(\Omega )\), if we prove that

$$\begin{aligned} \mathbf{a}_j(\nabla \phi _j(\cdot ,u_j))\rightharpoonup \mathbf{a}(\nabla \phi (\cdot ,u))\quad \text{ in }\ \,L^{p'}(\Omega ) \end{aligned}$$
(A.22)

(\(p'=p/(p-1)\)). To this aim, we observe that by (A.10) there exists \(\mathbf{z}\in L^{p'}(\Omega ;\mathbb {R}^N)\) such that (possibly up to a subsequence not relabeled)

$$\begin{aligned} \mathbf{a}_j(\nabla \phi _j(\cdot ,u_j))\rightharpoonup \mathbf{z}\quad \text{ in }\ \,L^{p'}(\Omega )\,. \end{aligned}$$
(A.23)

Therefore, letting \(j\rightarrow \infty \) in (A.21), for all \(\rho \in W^{1,p}_0(\Omega )\) we obtain

$$\begin{aligned} \int _{\Omega }\mathbf{z}\cdot \nabla \rho \,dx+\int _{\Omega }u\rho \,dx=\int _{\Omega }f\rho \,dx\,. \end{aligned}$$
(A.24)

On the other hands, for every nonnegative \(\psi \in C^1_c(\Omega )\) and \(l\in \mathbb {R}^N\), choosing \(\rho =[\phi _j(\cdot ,u_j)-l\cdot x]\,\psi \) as test function in (A.21), and letting \(j\rightarrow \infty \) gives

$$\begin{aligned}&\lim _{j\rightarrow \infty }\int _{\Omega }{} \mathbf{a}_j(\nabla \phi _j(x,u_j))\cdot \nabla \big [(\phi _j(x,u_j)-l\cdot x)\psi \big ]\,dx \nonumber \\&\quad =\int _{\Omega }f[\phi (x,u)-l\cdot x]\psi \,dx-\int _{\Omega }u[\phi (x,u)-l\cdot x]\,\psi \,dx \nonumber \\&\quad =\int _{\Omega }{} \mathbf{z}\cdot \nabla \big [(\phi (x,u)-l\cdot x)\psi \big ]\,dx \end{aligned}$$
(A.25)

(see (A.18), (A.19)–(A.20) and (A.24)), whereas from assumption \((H_1)\)-(ii), we have

$$\begin{aligned}&\lim _{j\rightarrow \infty }\int _{\Omega }{} \mathbf{a}_j(\nabla \phi _j(x,u_j))\cdot \nabla \big [[\phi _j(x,u_j)-l\cdot x]\psi \big ]\,dx \\&\quad =\lim _{j\rightarrow \infty }\left\{ \int _{\Omega }\mathbf{a}_j(\nabla \phi _j(x,u_j))\cdot \nabla [\phi _j(x,u_j)-l\cdot x]\,\psi \,dx \right. \\&\left. \qquad + \int _{\Omega }{} \mathbf{a}_j(\nabla \phi _j(x,u_j))\cdot \nabla \psi \,[\phi _j(x,u_j)-l\cdot x]\,dx\right\} \\&\quad =\limsup _{j\rightarrow \infty }\left\{ \int _{\Omega }[\mathbf{a}_j(\nabla \phi _j(x,u_j))-\mathbf{a}_j(l)]\cdot \nabla [\phi _j(x,u_j)-l\cdot x]\,\psi \,dx \right. \\&\left. \qquad +\int _{\Omega }{} \mathbf{a}_j(l)\cdot \nabla [\phi _j(x,u_j)-l\cdot x]\,\psi \,dx\right\} \\&\qquad + \int _{\Omega }{} \mathbf{z}\cdot \nabla \psi \,[\phi (x,u)-l\cdot x]\,dx\ge \int _{\Omega }{} \mathbf{a}(l)\cdot \nabla [\phi (x,u)-l\cdot x]\,\psi \,dx \\&\qquad +\int _{\Omega }{} \mathbf{z}\cdot \nabla \psi \,[\phi (x,u)-l\cdot x]\,dx \end{aligned}$$

(see also (A.19)–(A.20) and (A.23)), namely

$$\begin{aligned}&\lim _{j\rightarrow \infty }\int _{\Omega }{} \mathbf{a}_j(\nabla \phi _j(x,u_j))\cdot \nabla \big [[\phi _j(x,u_j)-l\cdot x]\psi \big ]\,dx \nonumber \\&\quad \ge \int _{\Omega }{} \mathbf{a}(l)\cdot \nabla [\phi (x,u)-l\cdot x]\,\psi \,dx+\int _{\Omega }{} \mathbf{z}\cdot \nabla \psi \,[\phi (x,u)-l\cdot x]\,dx\,. \end{aligned}$$
(A.26)

Combining (A.25) and (A.26) plainly gives

$$\begin{aligned} \int _{\Omega }\left[ \mathbf{a}(l)-\mathbf{z}\right] \cdot [\nabla \phi (x,u)-l]\,\psi \,dx\le 0 \end{aligned}$$

for all \(l\in \mathbb {R}^N\) and \(\psi \) as above. Arguing as in step (i) of the proof of Theorem 5.6, by the above inequality, we get \(\mathbf{z}=\mathbf{a}(\nabla \phi (\cdot ,u))\) a.e. in \(\Omega \), whence (A.22) immediately follows (see also (A.23)). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porzio, M.M., Smarrazzo, F. Existence and uniqueness for a class of nonlinear elliptic equations with measure data. Annali di Matematica 201, 499–528 (2022). https://doi.org/10.1007/s10231-021-01126-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-021-01126-1

Keywords

Mathematics Subject Classification

Navigation