Skip to main content
Log in

Helicoids and catenoids in \(M\times \mathbb {R} \)

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

Given an arbitrary \(C^\infty \) Riemannian manifold \(M^n\), we consider the problem of introducing and constructing minimal hypersurfaces in \(M\times \mathbb {R}\) which have the same fundamental properties of the standard helicoids and catenoids of Euclidean space \(\mathbb {R}^3=\mathbb {R} ^2\times \mathbb {R}\). Such hypersurfaces are defined by imposing conditions on their height functions and horizontal sections and then called vertical helicoids and vertical catenoids. We establish that vertical helicoids in \(M\times \mathbb {R}\) have the same fundamental uniqueness properties of the helicoids in \(\mathbb {R}^3.\) We provide several examples of properly embedded vertical helicoids in the case where M is one of the simply connected space forms. Vertical helicoids which are entire graphs of functions on \(\mathrm{Nil}_3\) and \(\mathrm{Sol}_3\) are also presented. We show that vertical helicoids of \(M\times \mathbb {R} \) whose horizontal sections are totally geodesic in M are locally given by a “twisting” of a fixed totally geodesic hypersurface of M. We give a local characterization of hypersurfaces of \(M\times \mathbb {R}\) which have the gradient of their height functions as a principal direction. As a consequence, we prove that vertical catenoids exist in \(M\times \mathbb {R}\) if and only if M admits families of isoparametric hypersurfaces. If so, properly embedded vertical catenoids can be constructed through the solutions of a certain first-order linear differential equation. Finally, we give a complete classification of the hypersurfaces of \(M\times \mathbb {R}\) whose angle function is constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In [6], hyperbolic space is not considered a Damek–Ricci space.

References

  1. Alarcón, E.M., Albujer, A.L., Caballero, M.: Spacelike hypersurfaces in the Lorentz-Minkowski space with the same Riemannian and Lorentzian mean curvature. Proceedings of L - Geloma - 2017, 1–12 (2016)

  2. Alarcón, E.M., Alias, L.J., dos Santos, F.R.: A new approach to minimal and maximal hypersurfaces in product spaces. Results Math. 74(3), 116 (2019)

    Article  MathSciNet  Google Scholar 

  3. Albujer, A.L., Caballero, M.: Geometric properties of surfaces with the same mean curvature in \(R^3\) and \(L^3\). J. Math. Anal. Appl. 445, 1013–1024 (2017)

    Article  MathSciNet  Google Scholar 

  4. Albujer, A. L., Caballero, M.: A note on mean isocurved hypersurfaces in a Lorentzian product space, preprint (2019)

  5. Bérard, P., Sa Earp, R.: Minimal hypersurfaces in \(\mathbb{H} ^n\times \mathbb{R} \), total curvature and index. Boll. Unione Mat. Ital. 9(3), 341–468 (2016)

    Article  MathSciNet  Google Scholar 

  6. Berndt, J., Tricerri, F., Vanhecke, L.: Generalized Heisenberg groups and Damek-Ricci harmonic spaces. Lecture Notes in Mathematics 1598. Springer Verlag (1995)

  7. Choe, J., Hoppe, J.: Higher dimensional minimal submanifolds generalizing the catenoid and helicoid. Tohoku Math. J. 65, 43–55 (2013)

    Article  MathSciNet  Google Scholar 

  8. Daniel, B.: Isometric immersions into \(\mathbb{S}^n\times \mathbb{R}\) and \(\mathbb{H}^n\times \mathbb{R}\) and applications to minimal surfaces. Trans. Am. Math. Soc. 361, 6255–6282 (2009)

    Article  Google Scholar 

  9. del Pino, M., Musso, M., Pacard, F.: Solutions of the Allen-Cahn equation which are invariant under screw-motion. Manuscr. Math. 138, 273–286 (2012)

    Article  MathSciNet  Google Scholar 

  10. Domínguez-Vázquez M.: An introduction to isoparametric foliations. Preprint (2018) (available at: http://xtsunxet.usc.es/miguel/teaching/jae2018.html)

  11. Domínguez-Vázquez, M., Manzano, J. M.: Isoparametric surfaces in \({\mathbb{E}}\left( {k,\,\tau } \right)\)-spaces. To appear in Annali della Scuola normale superiore di Pisa (available at: http://xtsunxet.usc.es/miguel/research/publications.html)

  12. SaEarp, R.: Parabolic and hyperbolic screw motion surfaces in \(\mathbb{H} ^2\times \mathbb{R} \). J. Aust. Math. Soc. 85(1), 113–143 (2008)

    Article  MathSciNet  Google Scholar 

  13. Hauswirth, L.: Minimal surfaces of Riemann type in three-dimensional product manifolds. Pac. J. Math. 224(1), 91–117 (2006)

    Article  MathSciNet  Google Scholar 

  14. Heintze, E., Hof, H.-C.: Geometry of horospheres. J. Diff. Geom. 12, 481–491 (1977)

    MathSciNet  MATH  Google Scholar 

  15. Kim, Y.W., Koh, S.-E., Shin, H., Yang, S.-D.: Helicoids in \(\mathbb{S}^2\times \mathbb{R}\) and \(\mathbb{H}^2\times \mathbb{R}\). Pac. Math. J. 242, 281–297 (2009)

    Article  Google Scholar 

  16. Kobayashi, O.: Maximal surfaces in the 3-Dimensional Minkowski Space \(L^{3}\). Tokyo J. Math. 6(2), 297–309 (1983)

    MathSciNet  MATH  Google Scholar 

  17. Manfio, F., Tojeiro, R.: Hypersurfaces with constant sectional curvature of \({\mathbb{S}}^{n} { \times }\mathbb{R} \)and .\({\mathbb{H}}^{n} { \times }\mathbb{R} \) Illinois J. Math. 55, 397–415 (2011)

    Article  MathSciNet  Google Scholar 

  18. Ou, Y.-L.: p-harmonic morphisms, minimal foliations, and rigidity of metrics. J. Geom. Phys. 52, 365–381 (2004)

    Article  MathSciNet  Google Scholar 

  19. Ou, Y.-L.: p-harmonic functions and the minimal graph equation in a Riemannian manifold. Illin. J. Math. 49, 911–927 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Pedrosa, R.H.L., Ritoré, M.: Isoperimetric domains in the Riemannian product of a circle with a simply connected space form and applications to free boundary problems. Indiana Univ. Math. J. 48, 1357–1394 (1999)

    Article  MathSciNet  Google Scholar 

  21. Shin, H., Kim, Y.W., Koh, S.-E., Lee, H.Y., Yang, S.-D.: Ruled minimal surfaces in the Berger sphere. Differ. Geom. Appl. 40, 209–222 (2015)

    Article  MathSciNet  Google Scholar 

  22. Tojeiro, R.: On a class of hypersurfaces in \(\mathbb{S}^n\times \mathbb{R}\) and \(\mathbb{H}^n\times \mathbb{R}\). Bull. Braz. Math. Soc. 41, 199–209 (2010)

    Article  MathSciNet  Google Scholar 

  23. Tondeur, P.: Foliations on Riemannian manifolds. Springer, Berlin (1988)

    Book  Google Scholar 

Download references

Acknowledgements

We are indebted to the anonymous referee for the many valuable comments and suggestions. They improved considerably our presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronaldo F. de Lima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima, R.F., Roitman, P. Helicoids and catenoids in \(M\times \mathbb {R} \). Annali di Matematica 200, 2385–2421 (2021). https://doi.org/10.1007/s10231-021-01085-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-021-01085-7

Keywords

Mathematics Subject Classification

Navigation