Skip to main content
Log in

A supersolutions perspective on hypercontractivity

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

The purpose of this article is to expose an algebraic closure property of supersolutions to certain diffusion equations. This closure property quickly gives rise to a monotone quantity which generates a hypercontractivity inequality. Our abstract argument applies to a general Markov semigroup whose generator is a diffusion and satisfies a curvature condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In fact, if the diffusion property holds, then the curvature condition is equivalent to (8).

  2. The identity \(\varGamma (\psi (u))= \psi '(u)^2\varGamma (u)\) holds for smooth \(\psi \) as a result of the diffusion property (6) and thus (13) holds in a formal sense by taking \(\psi (u) = u^{1/p}\). In the case of the Ornstein–Uhlenbeck semigroup, (13) may be rigorously verified by direct calculations.

  3. A result of Matkowski [23] asserts that concavity of J is almost always necessary for (22) in the setting of a probability measure space.

References

  1. Barthe, F.: The Brunn–Minkowski theorem and related geometric and functional inequalities. In: International Congress of Mathematicians. Eur. Math. Soc., Zürich, vol. 2, pp. 1529–1546 (2006)

  2. Ledoux, M.: Heat flows, geometric and functional inequalities. In: Proceedings of the International Congress of Mathematicians, vol. 4, pp. 117–135. Seoul (2014)

  3. Bennett, J.: Aspects of multilinear harmonic analysis related to transversality, Harmonic analysis and partial differential equations, Contemp. Math., Amer. Math. Soc., vol. 612 pp. 1–28 Providence, RI (2014)

  4. Tao, T.: Sharp bounds for multilinear curved Kakeya, restriction and oscillatory integral estimates away from the endpoint, arXiv:1907.11342

  5. Bennett, J., Bez, N.: Generating monotone quantities for the heat equation. J. Reine Angew. Math. 756, 37–63 (2019)

    Article  MathSciNet  Google Scholar 

  6. Nelson, E.: The free Markov field. J. Funct. Anal. 12, 211–227 (1973)

    Article  Google Scholar 

  7. Gross, L.: Logarithmic Sobolev inequalities. Am. J. Math. 97, 1061–1083 (1975)

    Article  MathSciNet  Google Scholar 

  8. Davies, E.B., Gross, L., Simon, B.: Hypercontractivity: a bibliographic review. In: Ideas and Methods in Quantum and Statistical Physics (Oslo, 1988), pp. 370–389 (1992)

  9. Gross, L.: Hypercontractivity, logarithmic Sobolev inequalities, and applications: a survey of surveys. In: Diffusion, quantum theory, and radically elementary mathematics, Math. Notes vol. 47, pp. 45–73. Princeton University Press, Princeton (2006)

  10. Bakry, D.: Transformations de Riesz pour les semigroupes symétriques, Séminaire de Probabilités XIX, pp. 145–174. Lecture Notes in Math, Springer (1985)

    Google Scholar 

  11. Bakry, D.: Étude des transformations de Riesz dans les variétés Riemanniennes à courbure de Ricci minorée, Séminaire de Probabilités XXI, pp. 137–172. Lecture Notes in Math, Springer (1987)

    Google Scholar 

  12. Bakry, D., Émery, M.: Diffusions hypercontractives, Séminaire de Probabilités XIX, pp. 177–206. Lecture Notes in Math, Springer (1985)

    Google Scholar 

  13. Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators. Grundlehren der mathematischen Wissenschaften, vol. 348. Springer, Berlin (2014)

    Book  Google Scholar 

  14. Ledoux, M.: The geometry of Markov diffusion generators. Ann. Fac. Sci. Toulouse Math. 9, 305–366 (2000)

    Article  MathSciNet  Google Scholar 

  15. Borell, C.: Positivity improving operators and hypercontractivity. Math. Z. 180, 225–234 (1982)

    Article  MathSciNet  Google Scholar 

  16. Bonami, A.: Étude des coefficients Fourier des fonctiones de \(L^p(G)\). Ann. Inst. Fourier 20, 335–402 (1970)

    Article  Google Scholar 

  17. Bennett, J., Bez, N.: Closure properties of solutions to heat inequalities. J. Geom. Anal. 19, 584–600 (2009)

    Article  MathSciNet  Google Scholar 

  18. Carlen, E.A., Lieb, E.H., Loss, M.: A sharp analog of Young’s inequality on \(S^N\) and related entropy inequalities. J. Geom. Anal. 14, 487–520 (2004)

    Article  MathSciNet  Google Scholar 

  19. Bennett, J., Carbery, A., Christ, M., Tao, T.: The Brascamp–Lieb inequalities: finiteness, structure and extremals. Geom. Funct. Anal. 17, 1343–1415 (2007)

    Article  MathSciNet  Google Scholar 

  20. Hu, Y.: A unified approach to several inequalities for Gaussian and diffusion measures, Séminaire de Probabilités XXXIV. Lecture Notes in Math. vol. 1729, pp. 329–335. Springer, Berlin (2000)

  21. Hu, Y.: Analysis on Gaussian Spaces. World Scientific Publishing Co., Singapore (2017)

    MATH  Google Scholar 

  22. Bakry, D., Bolley, F., Gentil, I.: Dimension dependent hypercontractivity for Gaussian kernels. Probab. Theory Relat. Fields 154, 845–874 (2012)

    Article  MathSciNet  Google Scholar 

  23. Matkowski, J.: The converse of the Hölder inequality and its generalizations. Studia Math. 109, 171–182 (1994)

    Article  MathSciNet  Google Scholar 

  24. Ledoux, M.: Remarks on Gaussian noise stability, Brascamp–Lieb and Slepian inequalities. In: Geometric aspects of functional analysis, Lecture Notes in Math. vol. 2116, pp. 309–333. Springer, Berlin (2014)

Download references

Acknowledgements

We would like to thank the anonymous referee for their helpful comments which led to numerous improvements in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal Bez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first, fifth and sixth authors were supported by JSPS Grant-in-Aid for Young Scientists A [Grant Number 16H05995], the second author was partially supported by ERC Grant 307617, the third author was supported by JSPS Grant-in-Aid for Young Scientists A [Grant Number 16H05995] and JSPS Grant-in-Aid for Scientific Research B [Grant Number 19H01796], and the fourth author was supported by JSPS Grant-in-Aid for Scientific Research C [Grant Number 16K05191].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoki, Y., Bennett, J., Bez, N. et al. A supersolutions perspective on hypercontractivity. Annali di Matematica 199, 2105–2116 (2020). https://doi.org/10.1007/s10231-020-00958-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-020-00958-7

Keywords

Mathematics Subject Classification

Navigation