Skip to main content
Log in

Regularizing effect of the interplay between coefficients in some nonlinear Dirichlet problems with distributional data

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

We prove that the solution u of Dirichlet problem (1.1) has exponential summability under the only assumption that there exists \(R>0\) such that \(|F(x)|^{2} \le R\,a(x)\); furthermore, we prove the boundedness of u under the slightly stronger assumption that there exists \(R>0\) such that \(|F(x)|^{p} \le R\,a(x)\), \(p>2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arcoya, D., Boccardo, L.: Regularizing effect of the interplay between coefficients in some elliptic equations. J. Funct. Anal 268, 1153–1166 (2015)

    Article  MathSciNet  Google Scholar 

  2. Arcoya, D., Boccardo, L.: Regularizing effect of \(L^q\) interplay between coefficients in some elliptic equations. J. Math. Pures Appl. 111(9), 106–125 (2018)

    Article  MathSciNet  Google Scholar 

  3. Boccardo, L., Murat, F.: Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. Nonlinear Anal. TMA 19, 581–597 (1992)

    Article  MathSciNet  Google Scholar 

  4. Boccardo, L., Orsina, L.: Existence results for Dirichlet problems in \(L^1\) via Minty’s lemma. Appl. Anal. 76, 309–317 (2000)

    Article  MathSciNet  Google Scholar 

  5. Buccheri, S.: Some nonlinear elliptic problems with \(L^1(\Omega )\) coefficients. Nonlinear Anal. 177, 135–152 (2018)

    Article  MathSciNet  Google Scholar 

  6. Degiovanni, M., Marzocchi, M.: Quasilinear elliptic equations with natural growth and quasilinear elliptic equations with singular drift. Nonlinear Anal. 185, 206–215 (2019)

    Article  MathSciNet  Google Scholar 

  7. Huang, S., Tian, Q., Wang, J., Mu, J.: Stability for noncoercive elliptic equations. Electron. J. Differ. Equ. Paper No. 242, 11 (2016)

  8. Leray, J., Lions, J.-L.: Quelques résultats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France 93, 97–107 (1965)

    Article  MathSciNet  Google Scholar 

  9. Mi, Y., Huang, S., Huang, C.: Combined effects of the Hardy potential and lower order terms in fractional Laplacian equations. Bound. Value Probl. Paper No. 61, 12 (2018)

  10. Moreno-Merida, L., Porzio, M.M.: Existence and asymptotic behavior of a parabolic equation with \(L^1\) data. Asymptot. Anal. 1, 1–17 (2019)

    Google Scholar 

  11. Oliva, F.: Regularizing effect of absorption terms in singular problems. J. Math. Anal. Appl. 472, 1136–1166 (2019)

    Article  MathSciNet  Google Scholar 

  12. Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15, 189–258 (1965)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referee for the careful reading of the manuscript and for the many useful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Orsina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Existence for bounded data F

Appendix: Existence for bounded data F

We prove here the existence of a solution of (1.1) if |F| is a function in \(L^{m}(\Omega )\), with \(m> N (> 2)\). First of all, let \(a_{n}(x) = \min (a(x),n)\). Then, by a straightforward application of the results of [8] (note that the datum \(-{\text {div}}(F)\) belongs to the dual of \(W_0^{1,2}(\Omega )\)), there exists a solution \(u_{n}\) in \(W_0^{1,2}(\Omega )\) of

$$\begin{aligned} -{\text {div}}(M(x,\nabla u_{n})) + a_{n}(x)\,u_{n}= -{\text {div}}(F). \end{aligned}$$

Choosing \(u_{n}\) as test function, and using (1.2), as well as Young's inequality, we have that

$$\begin{aligned} \alpha \int _{\Omega }|\nabla u_{n}|^{2} + \int _{\Omega }a_{n}(x)u_{n}^{2} = \int _{\Omega }F(x)\,\nabla u_{n}\le \frac{1}{2\alpha } \int _{\Omega }|F(x)|^{2} + \frac{\alpha }{2} \int _{\Omega }|\nabla u_{n}|^{2}, \end{aligned}$$

from which it follows that the sequence \(\{u_{n}\}\) is bounded in \(W_0^{1,2}(\Omega )\). Furthermore, using Stampacchia’s result (see [12]), and the fact that by (1.3) \(a_{n}\ge 0\), one can prove that the sequence \(\{u_{n}\}\) is also bounded in \(L^{\infty }(\Omega )\). Thus, up to subsequences, \(u_{n}\) converges to some function u in \(W_0^{1,2}(\Omega )\cap L^{\infty }(\Omega )\), weakly in \(W_0^{1,2}(\Omega )\), \(*\)-weakly in \(L^{\infty }(\Omega )\) and almost everywhere in \(\Omega\). Since \(0 \le a_{n}(x) \le a(x) \in L^{1}(\Omega )\), the boundedness of \(\{u_{n}\}\) in \(L^{\infty }(\Omega )\), and its almost everywhere convergence to u allow us to apply Lebesgue theorem to prove that

$$\begin{aligned} a_{n}(x)\,u_{n}\quad \text{ strongly } \text{ converges } \text{ to } a(x)\,u \hbox { in } L^{1}(\Omega ). \end{aligned}$$

In order to pass to the limit in the approximate equations, we will use Minty’s trick: let \(\varphi\) in \(W_0^{1,2}(\Omega )\cap L^{\infty }(\Omega )\), and choose \(u_{n}- \varphi\) as test function in the equation for \(u_{n}\). We obtain

$$\begin{aligned} \int _{\Omega }M(x,\nabla u_{n}) \nabla (u_{n}- \varphi ) + \int _{\Omega }a_{n}(x)u_{n}\,(u_{n}- \varphi ) = \int _{\Omega }F \nabla (u_{n}- \varphi ). \end{aligned}$$

Adding and subtracting the term

$$\begin{aligned} \int _{\Omega }M(x,\nabla \varphi ) \nabla (u_{n}- \varphi ), \end{aligned}$$

and using the fact that \(M(x,\cdot )\) is monotone, we arrive, after passing to the limit, to

$$\begin{aligned} \int _{\Omega }M(x,\nabla \varphi ) \nabla (u - \varphi ) + \int _{\Omega }a(x) u \,(u - \varphi ) \le \int _{\Omega }F \nabla (u - \varphi ). \end{aligned}$$

Choosing \(\varphi = u - t\,\psi\), with \(t \ne 0\) and \(\psi\) in \(W_0^{1,2}(\Omega )\cap L^{\infty }(\Omega )\), we thus have that

$$\begin{aligned} t\,\int _{\Omega }M(x,\nabla (u - t\psi )) \nabla \psi + t\,\int _{\Omega }a(x) u \,\psi \le t\,\int _{\Omega }F \nabla \psi . \end{aligned}$$

Dividing by \(t > 0\) and letting t tend to zero, we arrive at

$$\begin{aligned} \int _{\Omega }M(x,\nabla u) \nabla \psi + \int _{\Omega }a(x) u \,\psi \le \int _{\Omega }F \nabla \psi , \end{aligned}$$

while the reverse inequality can be obtained dividing by \(t < 0\), and then letting t tend to zero. Thus, we have proved that

$$\begin{aligned} \int _{\Omega }M(x,\nabla u) \nabla \varphi + \int _{\Omega }a(x)\,u\,\varphi = \int _{\Omega }F(x) \nabla \varphi , \qquad \forall \varphi \in W_0^{1,2}(\Omega )\cap L^{\infty }(\Omega ), \end{aligned}$$

that is, problem (1.1) has a solution u belonging to \(W_0^{1,2}(\Omega )\cap L^{\infty }(\Omega )\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arcoya, D., Boccardo, L. & Orsina, L. Regularizing effect of the interplay between coefficients in some nonlinear Dirichlet problems with distributional data. Annali di Matematica 199, 1909–1921 (2020). https://doi.org/10.1007/s10231-020-00949-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-020-00949-8

Keywords

Mathematics Subject Classification

Navigation