Skip to main content
Log in

Lorentzian manifolds with causal Killing vector field: causality and geodesic connectedness

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

We prove that a compact Lorentzian manifold \(({\overline{M}},{\overline{g}})\) admitting a causal Killing vector field is totally vicious or it contains a compact achronal Killing horizon. In particular a compact spacetime which satisfies the null generic condition and admits a causal Killing vector field is totally vicious. If in addition, its universal Lorentzian covering is globally hyperbolic then it is geodesically connected. In the non-compact case, we prove that a chronological spacetime admitting a complete causal Killing vector field, a smooth spacelike partial Cauchy hypersurface S and satisfying the null generic condition is stably causal. If additionally S is compact then the spacetime is globally hyperbolic. We also determine the geodesic connectedness in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atindogbe, C., Hounnonkpe, R.: Timelike symmetries and causality in Lorentzian manifolds. Int. J. Maps Math. 1, 188–218 (2018)

    Google Scholar 

  2. Avez, A.: Essais de géométrie riemannienne hyperbolique globale. Applications à la relativité générale. Ann. Inst. Fourier (Grenoble) 132, 105–190 (1963)

    Article  Google Scholar 

  3. Bartolo, R., Candela, A.M., Flores, J.L.: Connectivity by geodesics on globally hyperbolic spacetimes with a lightlike Killing vector field. Rev. Mat. Iberoam. 33(1), 1–28 (2017)

    Article  MathSciNet  Google Scholar 

  4. Beem, J.K., Ehrlich, P.E.: Global Lorentzian Geometry. Marcel Dekker Inc., New York (1981)

    MATH  Google Scholar 

  5. Beem, J.K.: Conformal changes and geodesic completeness. Commun. Math. Phys. 49, 179–186 (1976)

    Article  MathSciNet  Google Scholar 

  6. Beem, J.K., Parker, P.E.: Pseudoconvexity and geodesic connectedness. Ann. Mat. Pura Appl. 155, 137–142 (1989)

    Article  MathSciNet  Google Scholar 

  7. Candela, A.M., Flores, J.L., Sánchez, M.: Global hyperboliticity and Palais–Smale condition for action functionals in stationary spacetimes. Adv. Math. 218, 515–536 (2008)

    Article  MathSciNet  Google Scholar 

  8. Candela, A.M., Sánchez, M.: Geodesics in semi-Riemannian manifolds: geometric properties and variational tools. In: Alekseevsky, D.V., Baum, H. (eds.) Recent Developments in Pseudo-Riemannian Geometry. Special Volume in the ESI-Series on Mathematics and Physics, pp. 359–418. EMS Publishing House, Zurich (2008)

    Chapter  Google Scholar 

  9. e Silva, I.P.C.: A study in stationary: geometric properties of stationary regions and regularity of their horizons. In: Cañadas-Pinedo, M.A., Flores, J.L., Palomo, F.J. (eds.) Lorentzian Geometry and Related Topics. Springer Proceedings in Mathematics and Statistics, vol. 211. Springer, Cham (2017)

    Google Scholar 

  10. e Silva, I.P.C.: On the splitting problem for Lorentzian manifolds with an \({\mathbb{R}}\) action with causal orbits. Ann. Henri Poincaré 18, 1635–1670 (2017)

    Article  MathSciNet  Google Scholar 

  11. Duggal, K.L., Bejancu, A.: Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, vol. 364. Kluwer Academic, Boston (1996)

    Book  Google Scholar 

  12. Galloway, G.J.: Maximum principles for null hypersurfaces and null splitting theorems. Ann. Henri Poincaré 1, 543–567 (2000)

    Article  MathSciNet  Google Scholar 

  13. Gutiérrez, M., Olea, B.: Induced Riemannian structures on null hypersurfaces. Math. Nachr. 289, 1219–1236 (2015)

    Article  MathSciNet  Google Scholar 

  14. Harris, S.G.: Conformally stationary spacetimes. Class. Quantum Gravity 9, 1823–1827 (1992)

    Article  MathSciNet  Google Scholar 

  15. Hawking, S.W.: Black holes in general relativity. Commun. Math. Phys. 25, 152–166 (1972)

    Article  MathSciNet  Google Scholar 

  16. Javaloyes, M.A., Sánchez, M.: A note on the existence of standard splittings for conformally stationary spacetimes. Class. Quantum Gravity 25(16), 168001 (2008). 1-7

    Article  MathSciNet  Google Scholar 

  17. Kriele, M.: The structure of chronology violating sets with compact closure. Class. Quantum Gravity 6, 1607–1611 (1989)

    Article  MathSciNet  Google Scholar 

  18. Minguzzi, E.: Non-imprisonment conditions on spacetime. J. Math. Phys. 49(062503), 1–9 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Minguzzi, E.: Weak distinction and the optimal definition of causal continuity. Class. Quantum Gravity 25(075015), 1–7 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Minguzzi, E., Sánchez, M.: The causal hierarchy of spacetimes. In: Baum, H., Alekseevsky, D. (eds.) Recent Developments in Pseudo-Riemannian Geometry. ESI Lectures in Mathematics and Physics, pp. 299–358. European Mathematical Society, Zürich (2008)

    Chapter  Google Scholar 

  21. Minguzzi, E.: Chronological spacetimes without lightlike lines are stably causal. Commun. Math. Phys. 288, 801–819 (2009)

    Article  MathSciNet  Google Scholar 

  22. Minguzzi, E.: Area theorem and smoothness of compact Cauchy horizons. Commun. Math. Phys. 339, 57–98 (2015)

    Article  MathSciNet  Google Scholar 

  23. O’Neill, B.: Semi-Riemannian Geometry with Application to Relativity. Academic Press, Cambridge (1983)

    MATH  Google Scholar 

  24. Palais, R.: On the existence of slices for actions of non-compact Lie groups. Ann. Math. 73, 295–323 (1961)

    Article  MathSciNet  Google Scholar 

  25. Sánchez, M.: On causality and closed geodesics of compact Lorentzian manifolds and static spacetimes. Differ. Geom. Appl. 24, 21–32 (2006)

    Article  MathSciNet  Google Scholar 

  26. Seifert, H.J.: Global connectivity by timelike geodesics. Z. Naturforsch. 22a, 1356–1360 (1970)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The second and third authors has been partially supported by the Ministerio de Economía y Competitividad, [Grant Number FEDER-MTM2016-78647-P]. The third author has been partially supported by the African Centre of Excellence in Mathematical Sciences and Applications ACE-SMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gutiérrez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atindogbe, C., Gutiérrez, M. & Hounnonkpe, R. Lorentzian manifolds with causal Killing vector field: causality and geodesic connectedness. Annali di Matematica 199, 1895–1908 (2020). https://doi.org/10.1007/s10231-020-00948-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-020-00948-9

Keywords

Mathematics Subject Classification

Navigation