Skip to main content
Log in

Comparative Assessment of Leaching Tests According to Lixiviation and Geochemical Behavior of Potentially Toxic Elements from Abandoned Mining Wastes

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

The release of potentially toxic elements (PTEs) from abandoned mining waste (AMW) is generally assessed with leaching tests. The United States, Mexico, and Spain's geological surveys respectively use leaching tests USGS FLT, NOM-141-SEMARNAT-2003, and EN-12457-2 to assess the potential water pollution from AMW. However, to facilitate preliminary hazard assessment of the potential leaching, especially for daily practice at sites with a large amount of recorded AMW, a comparative assessment of these widely used leaching tests can be helpful. The present research covers this knowledge gap by evaluating the geochemical leaching behavior of As, Ba, Cu, Pb, and Zn, by using these leaching tests in different types of AMW. The results suggest that these methods show slight differences in saturation indices, pH, specific conductance, redox potential, and released PTEs that can be mainly imputed to the contact time. Despite these differences, the findings suggest that the lixiviation patterns from the analyzed methods are comparable, and allow the same conclusions to be reached regarding the potential hazard of the AMW as a function of the solubility of the PTEs.

通常, 我们用淋滤试验评价废弃采矿废物 (AMW) 的潜在有毒元素 (PTEs) 释放特征。美国、墨西哥和西班牙的地质调查部门分别用USGS FLT、NOM-141-SEMARNAT-2003和EN-12457-2淋滤试验评价废弃采矿废物 (AMW) 的潜在水污染。然而, 为了便于评价潜在淋滤行为的基本危险性, 特别是大量废弃采矿废物 (AMW) 场点的日常评价, 对这些广泛使用的淋滤试验进行比较评价尤为重要。研究通过对不同类型废弃采矿废物 (AMW) 进行上述淋滤试验, 评价它们的砷、钡、铜、铅和锌的地球化学滤出行为, 弥补了这一研究空白。结果表明, 这些淋滤试验方法在饱和指数、pH值、比电导率、氧化还原电位和潜在有毒元素 (PTEs) 释放方面差异较小, 差异主要由接触时间引起。虽然存在差异, 但是它们的浸滤模式可对比, 可获得废弃采矿废物 (AMW) 的潜在危险性随潜在有毒元素 (PTEs) 溶解度而变化的一致结论。

Zusammenfassung

Die Freisetzung von potentiell toxischen Elementen (PTEs) aus stillgelegten Bergbauabfällen (AMW) wird im Allgemeinen mit Auslaugungstests bewertet. Die geologischen Dienste der USA, Mexikos und Spaniens verwenden jeweils die Auslaugungstests USGS FLT, NOM-141-SEMARNAT-2003 und EN-12457–2, um die potentielle Wasserverschmutzung durch AMW zu bewerten. Um jedoch eine vorläufige Gefährdungsbeurteilung der potenziellen Auswaschung zu erleichtern, insbesondere für die tägliche Praxis an Standorten mit einer großen Menge an bekannten AMW, kann eine vergleichende Bewertung dieser weit verbreiteten Auswaschungstests hilfreich sein. Die vorliegende Untersuchung schließt diese Wissenslücke, indem sie das geochemische Auslaugungsverhalten von As, Ba, Cu, Pb und Zn unter Verwendung dieser Auslaugungstests in verschiedenen Arten von AMW bewertet. Die Ergebnisse deuten darauf hin, dass diese Methoden leichte Unterschiede in den Sättigungsindizes, dem pH-Wert, der spezifischen Leitfähigkeit, dem Redoxpotential und den freigesetzten PTEs aufweisen, die hauptsächlich auf die Kontaktzeit zurückzuführen sind. Trotz dieser Unterschiede deuten die Ergebnisse darauf hin, dass die Lixivierungs.

Muster der untersuchten Methoden vergleichbar sind und dieselben Schlussfolgerungen hinsichtlich des Gefährdungspotenzials des AMW in Abhängigkeit von der Löslichkeit der PTEs zulassen.

Resumen

La liberación de elementos potencialmente tóxicos (PTEs) de los residuos mineros abandonados (AMW) se evalúa generalmente con pruebas de lixiviación. Los servicios geológicos de Estados Unidos, México y España utilizan respectivamente las pruebas de lixiviación USGS FLT, NOM-141-SEMARNAT-2003 y EN-12457–2 para evaluar la posible contaminación del agua por los AMW. Sin embargo, para facilitar la evaluación preliminar del peligro de la lixiviación potencial, especialmente para la práctica diaria en sitios con una gran cantidad de AMW registrados, puede ser útil una evaluación comparativa de estas pruebas de lixiviación ampliamente utilizadas. La presente investigación cubre este vacío de conocimiento evaluando el comportamiento geoquímico de lixiviación de As, Ba, Cu, Pb y Zn, mediante el uso de estos ensayos de lixiviación en diferentes tipos de AMW. Los resultados sugieren que estos métodos muestran ligeras diferencias en los índices de saturación, el pH, la conductancia específica, el potencial redox y los PTEs liberados que pueden imputarse principalmente al tiempo de contacto. A pesar de estas diferencias, los resultados sugieren que los patrones de lixiviación de los métodos analizados son comparables y permiten llegar a las mismas conclusiones en cuanto a los riesgos potenciales de los AMW en función de la solubilidad de los PTEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

taken from ten abandoned mining wastes facilities in Spain. Source: The cartographic baseline was taken from the IGN (2021). See Table 1 for the name of each mine

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Abed SR, Hageman PL, Jegadeesan G, Madhavan N, Allen D (2006) Comparative evaluation of short-term leach tests for heavy metal release from mineral processing waste. Sci Total Environ 364:14–23. https://doi.org/10.1016/j.scitotenv.2005.10.021

    Article  Google Scholar 

  • Al-Abed SR, Jegadeesan G, Purandare J, Allen D (2008) Leaching behavior of mineral processing waste: Comparison of batch and column investigations. J Hazard Mater 153:1088–1092. https://doi.org/10.1016/j.jhazmat.2007.09.063

    Article  Google Scholar 

  • Alberruche del Campo E, Arranz-González J, Rodríguez P, Vadillo L, Rodríguez-Gómez V, Fernández F (2014) Manual for risk assessment of closed or abandoned extractive industry waste facilities. Spanish Ministry of Agriculture, Food and Environment and Spanish Geological Survey, Madrid, Spain [in Spanish]

  • Alloway BJ (2013) Heavy Metals in Soils, 3rd edn. Springer, Dordrecht

    Book  Google Scholar 

  • Appelo CAJ, Postma D (2005) Geochemistry, Groundwater and Pollution, 2nd Edn. Amsterdam, Netherlands

  • Argane R, El Adnani M, Benzaazoua M, Bouzahzah H, Khalil A, Hakkou R, Taha Y (2016) Geochemical behavior and environmental risks related to the use of abandoned base-metal tailings as construction material in the upper-Moulouya district, Morocco. Environ Sci Pollut Res 23:598–611. https://doi.org/10.1007/s11356-015-5292-y

    Article  Google Scholar 

  • Arranz-González J, Cala-Rivero V (2011) Heavy metals mobility assessment in metallic flotation tailings in Huelva province. Boletín Geológico y Min 122:203–220 ((in Spanish))

    Google Scholar 

  • Arranz-González JC, Rodríguez-Gómez V, Fernández-Naranjo FJ, Vadillo-Fernández L (2020) Assessment of the pollution potential of a special case of abandoned sulfide tailings impoundment in Riotinto mining district (SW Spain). Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-11473-w

    Article  Google Scholar 

  • Arranz-González J, Rodríguez-Gómez V, Rodríguez-Pacheco R, Fernández F, Vadillo L, Alberruche del Campo E (2019) Guidance for the rehabilitation of abandoned mine tailings facilities. Ministry of Ecological Transition and Spanish Geological Survey, Madrid, Spain (in Spanish)

  • Atapour H, Aftabi A (2007) The geochemistry of gossans associated with Sarcheshmeh porphyry copper deposit, Rafsanjan, Kerman, Iran: implications for exploration and the environment. J Geochem Explor 93:47–65. https://doi.org/10.1016/j.gexplo.2006.07.007

    Article  Google Scholar 

  • Ávila PF, Da SEF, Salgueiro AR, Farinha JA (2008) Geochemistry and mineralogy of mill tailings impoundments from the Panasqueira mine (Portugal):iImplications for the surrounding environment. Mine Water Environ 27:210–224. https://doi.org/10.1007/s10230-008-0046-4

    Article  Google Scholar 

  • Bigham JM, Nordstrom DK (2000) Iron and aluminum hydroxysulfates from acid sulfate waters. Rev Mineral Geochem 40:351–403

    Article  Google Scholar 

  • Blowes DW, Ptacek CJ, Jurjovec J (2003) Mill tailings: hydrogeology and geochemistry. In: Jambor JL, Blowes DW, Ritchie A (eds), Environmental Aspects of Mine Wastes, Mineralogical Assoc of Canada, Vancouver, pp 95–116

  • Bussière B (2007) Colloquium 2004: Hydrogeotechnical properties of hard rock tailings from metal mines and emerging geoenvironmental disposal approaches. Can Geotech J 44:1019–1052. https://doi.org/10.1139/T07-040

    Article  Google Scholar 

  • CCME (2018) Canadian soil quality guidelines for the protection of environmental and human health. In: Canadian Environmental Quality Guidelines. Canadian Council of Ministers of the Environment (CCME). https://ccme.ca/en/current-activities/canadian-environmental-quality-guidelines Accessed 2021–03–18

  • CEN (2002) Characterization of waste-leaching-compliance test for leaching of granular waste materials and sludges - Part 2: One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction). European Committee for Standardization, Brussels

    Google Scholar 

  • Courtin-Nomade A, Waltzing T, Evrard C, Soubrand M, Lenain F, Ducloux E, Ghorbel S, Grosbois C, Bril H (2015) Arsenic and lead mobility: from tailing materials to the aqueous compartment. Appl Geochem 64:10–21. https://doi.org/10.1016/j.apgeochem.2015.11.002

    Article  Google Scholar 

  • Del Rio-Salas R, Ayala-Ramírez Y, Loredo-Portales R, Romero F, Molina-Freaner M-O, Pi-Puig T, Ochoa-Landín L, Moreno-Rodríguez V (2019) Mineralogy and geochemistry of rural road dust and nearby mine tailings: A case of ignored pollution hazard from an abandoned mining site in semi-arid zone. Nat Resour Res. https://doi.org/10.1007/s11053-019-09472-x

    Article  Google Scholar 

  • Dubbin WE (2005) Environmental geochemistry. Encycl Geol. https://doi.org/10.1016/B0-12-369396-9/00203-3

    Article  Google Scholar 

  • Fällman AM, Aurell B (1996) Leaching tests for environmental assessment of inorganic substances in wastes, Sweden. Sci Total Environ 178:71–84. https://doi.org/10.1016/0048-9697(95)04799-9

    Article  Google Scholar 

  • Gupta SK, Vollmer MK, Krebs R (1996) The importance of mobile, mobilisable and pseudo total heavy metal fractions in soil for three-level risk assessment and risk management. Sci Total Environ 178:11–20. https://doi.org/10.1016/0048-9697(95)04792-1

    Article  Google Scholar 

  • Guzmán-Martínez F, Arranz-González JC, Ortega MF, García-Martínez M, Rodríguez-Gómez V (2020a) A new ranking scale for assessing leaching potential pollution from abandoned mining wastes based on the Mexican official leaching test. J Environ Manag. https://doi.org/10.1016/j.jenvman.2020.111139

    Article  Google Scholar 

  • Guzmán-Martínez F, Arranz-González JC, Smoll L, Collahuazo L, Calderón E, Otero O, Arceo F (2020b) Mining environmental liabilities: Handbook for the inventory of abandoned or paralyzed mines. Association of Iberoamerican geology and mining surveys [in Spanish]. https://asgmi.org/wp-content/uploads/2020/06/Manual-Inventario-PAM-y-Anexos.pdf Accessed 2021–03–27

  • Hageman PL, Seal RR, Diehl SF, Piatak N, Lowers A (2015) Evaluation of selected static methods used to estimate element mobility, acid-generating and acid-neutralizing potentials associated with geologically diverse mining wastes. Appl Geochem 57:125–139. https://doi.org/10.1016/j.apgeochem.2014.12.007

    Article  Google Scholar 

  • Hageman P (2007) U.S. Geological Survey field leach test for assessing water reactivity and leaching potential of mine wastes, soils, and other geologic and environmental materials. In: Laboratory Methods and Analysis. USGS, Reston, Virginia. https://doi.org/10.3133/tm5D3

  • Helsel DR (2015) Statistics for censored environmental data using MINITAB® and R, 2nd edn. John Wiley & Sons Inc, Denver CO

    Google Scholar 

  • Helsel DR, Hirsch RM (1992) Statistical Methods in Water Resources. Elsevier, Reston, Virginia

    Google Scholar 

  • IGN (2021) Spanish National Geographic Institute. National Center for Geographic Information Download Center. http://centrodedescargas.cnig.es/CentroDescargas/index.jsp Accessed 2021–02–21 (in Spanish)

  • Jamieson HE (2011) Geochemistry and mineralogy of solid mine waste: Essential knowledge for predicting environmental impact. Elements 7:381–386. https://doi.org/10.2113/gselements.7.6.381

    Article  Google Scholar 

  • Jamieson HE, Walker SR, Parsons MB (2015) Mineralogical characterization of mine waste. Appl Geochem 57:85–105. https://doi.org/10.1016/j.apgeochem.2014.12.014

    Article  Google Scholar 

  • Jiménez-Oyola S, García-Martínez M-J, Ortega MF, Bolonio D, Rodríguez C, Esbrí JM, Llamas J, Higueras P (2020) Multi-pathway human exposure risk assessment using Bayesian modeling at the historically largest mercury mining district. Ecotoxicol Environ Saf 201:110833. https://doi.org/10.1016/j.ecoenv.2020.110833

    Article  Google Scholar 

  • Lu CC, Hsu MH, Lin YP (2019) Evaluation of heavy metal leachability of incinerating recycled aggregate and solidification/stabilization products for construction reuse using TCLP, multi-final pH and EDTA-mediated TCLP leaching tests. J Hazard Mater 368:336–344. https://doi.org/10.1016/j.jhazmat.2019.01.066

    Article  Google Scholar 

  • McCarthey D (2014) Essentials of Soil Mechanics and Foundations: Basic Geotechnics. 7th Edn, Pearson, London U.K.

  • Modabberi S (2018) Mineralogical and geochemical characterization of mining wastes: remining potential and environmental implications, Muteh gold deposit. Iran Environ Monit Assess. https://doi.org/10.1007/s10661-018-7103-7

    Article  Google Scholar 

  • Nieva NE, Borgnino L, García MG (2018) Long term metal release and acid generation in abandoned mine wastes containing metal-sulphides. Environ Pollut 242:264–276. https://doi.org/10.1016/j.envpol.2018.06.067

    Article  Google Scholar 

  • Parkhurst DL, Appelo C (2013) Description of input and examples for PHREEQC Version 3 — a computer program for speciation , batch-reaction , one-dimensional transport , and inverse geochemical calculations. USGS Tech Methods, 6–43A. https://doi.org/10.3133/tm6A43

  • Peech M (1965) Hydrogen-ion activity. In: Norman AG (ed) Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties, Wiley, Ithaca, New York, pp 914–926

  • Peña-Ortega M, Del Rio-Salas R, Valencia-Sauceda J, Mendívil-Quijada H, Minjarez-Osorio C, Molina-Freaner F, de la O-Villanueva M, Moreno-Rodríguez V (2019) Environmental assessment and historic erosion calculation of abandoned mine tailings from a semi-arid zone of northwestern Mexico: insights from geochemistry and unmanned aerial vehicles. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-05849-w

    Article  Google Scholar 

  • R Core Team (2020). R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. https://www.R-project.org/

  • Radovanovic DD, Kamberovic ZJ, Korac MS, Rogan JR (2016) Solidified structure and leaching properties of metallurgical wastewater treatment sludge after solidification/stabilization process. J Environ Sci Heal A 51:34–43. https://doi.org/10.1080/10934529.2015.1079104

    Article  Google Scholar 

  • Reimann C, Filzmoser P, Garrett R, Dutter R (2008) Statistical data analysis explained: applied environmental statistics with R. First. John Wiley & Sons Ltd., Chichester

    Book  Google Scholar 

  • RStudio Team (2016). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/.

  • SEMARNAT (2004) Official Mexican Standard to establish and characterized tailings and, criteria and specifications to prepare and characterized the site, project, construction, operation and post operation of tailings impoundments. Mexican Ministry of Environment and Natural Resources, NOM-141-SEMARNAT-2003 (in Spanish)

  • Smith KS, Ramsey CA, Hageman PL (2000) Sampling strategy for the rapid screening of mine-waste dumps on abandoned mine lands. USGS Open-File Rept, pp. 1453–1461. https://doi.org/10.3133/ofr0016

  • Snoeyink V, Jenkins D (1980) Water Chemistry, 1st edn. John Wiley & Sons, New York City

    Google Scholar 

  • Sun Y, Xie Z, Li J, Xu J, Chen Z, Naidu R (2006) Assessment of toxicity of heavy metal contaminated soils by the toxicity characteristic leaching procedure. Environ Geochem Health 28:73–78. https://doi.org/10.1007/s10653-005-9014-0

    Article  Google Scholar 

  • USEPA (1992) SW-846 Test Method 1311: Toxicity Characteristic Leaching Procedure. In: Hazardous waste test methods / SW-846. U.S. Environmental Protection Agency (USEPA). https://www.epa.gov/hw-sw846/sw-846-test-method-1311-toxicity-characteristic-leaching-procedure Accessed 2021–01–12

  • Van Der Sloot HA (1996) Developments in evaluating environmental impact from utilization of bulk inert wastes using laboratory leaching tests and field verification. Waste Manag 16:65–81. https://doi.org/10.1016/S0956-053X(96)00028-1

    Article  Google Scholar 

  • Van Der Sloot HA, Comans RNJ, Hjelmar O (1996) Similarities in the leaching behaviour of trace contaminants from waste, stabilized waste, construction materials and soils. Sci Total Environ 178:111–126. https://doi.org/10.1016/0048-9697(95)04803-0

    Article  Google Scholar 

  • Van der Sloot HA, Kosson DS (2012) Use of characterisation leaching tests and associated modelling tools in assessing the hazardous nature of wastes. J Hazard Mater 207–208:36–43. https://doi.org/10.1016/j.jhazmat.2011.03.119

    Article  Google Scholar 

  • Van der Sloot HA, Van Zomeren A (2012) Characterisation leaching tests and associated geochemical speciation modelling to assess long term release behaviour from extractive wastes. Mine Water Environ 31:92–103. https://doi.org/10.1007/s10230-012-0182-8

    Article  Google Scholar 

Download references

Acknowledgements

The Spanish Geological Survey (IGME) supported this research. The European Regional Development Fund (IGME-4E-13-2464) supported the equipment for x-ray fluorescence analysis. The authors are greatly indebted to Dr. Paulina B. Ramirez, Catholic University of Chile (Dept of Hydraulic and Environmental Engineering) for her constructive comments and also to the anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredy Guzmán-Martínez.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzmán-Martínez, F., Arranz-González, J.C., García-Martínez, M.J. et al. Comparative Assessment of Leaching Tests According to Lixiviation and Geochemical Behavior of Potentially Toxic Elements from Abandoned Mining Wastes. Mine Water Environ 41, 265–279 (2022). https://doi.org/10.1007/s10230-021-00800-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-021-00800-3

Keywords

Navigation