Skip to main content

Advertisement

Log in

Identification of Flow Zones Inside and at the Base of a Uranium Mine Tailings Dam Using Geophysics

Identificación Mediante Geofísica de Zonas de Flujo en el Interior y en el Basamento de una Presa de Colas de una Mina de Uranio

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Potential problems related to a tailings dam’s stability are a matter of concern, especially where structural failure might endanger nearby communities and the environment. The Osamu Utsumi mine, located in the State of Minas Gerais, is currently not operating. The rock-soil tailings dam has water upwelling downstream in the bedrock, with water flux confined to rock fractures. This research was conducted to identify possible flux zones in the base of the dam using DC resistivity and electrical resistivity tomography (ERT). The data acquisition consisted of five ERT lines with 6 m of spacing between electrodes, using a Schlumberger array. The results are presented by 2D and 3D geophysical models comprising measured and processed resistivity values. It was possible to identify a low resistivity zone (5–20 Ωm), whose structural continuity indicates water infiltration in the bedrock under the dam. Moreover, the results do not indicate that erosion is taking place in the interior of the dam, reducing the risk of geotechnical instability and failure of physical integrity.

Resumen

Los potenciales problemas relacionados con la estabilidad de un dique de colas son motivo de preocupación, especialmente cuando una falla estructural puede poner en peligro a las comunidades aguas abajo y al medio ambiente. La mina Osamu Utsumi, situada en el Estado de Minas Gerais (Brasil), no está actualmente en operación. La presa de relaves de roca-suelo tiene flujo hídrico con aguas surgentes aguas abajo, en el lecho rocoso, relacionadas y restringidas a las fracturas del substrato rocoso. Esta investigación se llevó a cabo para identificar posibles franjas de flujo, en el basamento de la presa, utilizando resistividad DC y tomografía de resistividad eléctrica (ERT). El registro de datos se efectuó en cinco líneas de ERT, con 6 m de espaciado entre electrodos, utilizando el dispositivo Schlumberger. Los resultados se presentan en modelos geofísicos 2D y 3D, que incluyen valores de resistividad medidos y procesados. La investigación permitió identificar una franja de baja resistividad (5–20 Ωm), cuya continuidad estructural refleja la infiltración y flujo de agua en el substrato rocoso, bajo la presa. Además, los resultados no manifiestan que se esté produciendo erosión en el cuerpo de la presa, lo que reduce el riesgo de inestabilidad geotécnica y de fallo de su integridad física.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • ABEM (2012) Terrameter LS—instruction manual. Sundbyberb, Sweden

    Google Scholar 

  • Albuquerque R, Braga MA, Andrade-Oliveira L, Santana de Oliveira-Dias L, Pinto-Almeida LA, Oliveira AH, Brandão S (2019) Caracterização de barragens de rejeito usando geofísica rasa: aplicação na Barragem B1 de Cajati, São Paulo. Anuário do Instituto de Geociências. https://doi.org/10.11137/2019_1_567_579[in Portuguese]

  • Al-Fares W (2014) Application of electrical resistivity tomography technique for characterizing leakage problem in Abu Baara earth dam, Syria. Geophys J Int. doi.https://doi.org/10.1155/2014/368128

    Article  Google Scholar 

  • Asfahani J, Radwan Y, Layyous I (2010) Integrated geophysical and morphotectonic survey of the impact of Ghab extensional tectonics on the Qastoon dam, northwestern Syria. Pure Appl Geophys 167:323–338

    Article  Google Scholar 

  • Assumpção M, Marza V, Barros L, Chimpliganond C, Soares J, Carvalho J, Caixeta D, Amorim A, Cabral E (2002) Reservoir-induced seismicity in Brazil. Pure Appl Geophys 159:597–617

    Article  Google Scholar 

  • Bedrosian PA, Burton BL, Powers MH, Minsley BJ (2012) Geophysical investigations of geology and structure at the Mathis Creek Dam, Truckee, California. J Appl Geophys 77:7–20

    Article  Google Scholar 

  • Bièvre G, Lacroix P, Oxarango L, Goutaland D, Monnot G, Fargier Y (2017) Integration of geotechnical and geophysical techniques for the characterization of a small earth-filled canal dyke and the localization of water leakage. J Appl Geophys 139:1–15. https://doi.org/10.1016/j.jappgeo.2017.02.002

    Article  Google Scholar 

  • Camarero P, Moreira CA, Garcia H (2019) Analysis of the physical integrity of earth dams from electrical resistivity tomography (ERT) in Brazil. Pure Appl Geophys 176:5363–5375. https://doi.org/10.1007/s00024-019-02271-8

    Article  Google Scholar 

  • Chandler RJ, Tosatti G (1995) The Stava tailings dams failure, Italy, July 1985. Proc Inst Civ Eng Geotech Eng 113:67–79

    Article  Google Scholar 

  • Coulibaly Y, Belem T, Cheng L (2017) Numerical analysis and geophysical monitoring for stability assessment of the northwest tailings dam at Westwood Mine. Int J Min Sci Technol 27:701–710. https://doi.org/10.1016/j.ijmst.2017.05.012

    Article  Google Scholar 

  • Franklin MR (2007) Modelagem numerica do escoamento hidrológico e dos processos geoquímicos aplicados à previsão da drenagem ácida em uma pilha de estéril da mina de urânio de Paço de Caldas-MG. PhD Diss, Univ Federal of Rio de Janeiro [in Portuguese]

  • IBAMA (2017) Apresenta informaçoes em O que e segurança de barragens. IBAMA, Brasília, Brazil. www.ibama.gov.br/emergencias-ambientais/seguranca-de-barragens/o-que-e-seguranca-de-barragens. Acessed 10 Mar 2018 [in Portuguese]

  • IBAMA (2019) Apresenta Rompimento de barragem da Vale em Brumadinho (MG) destruiu 269,84 hectares. IBAMA, Brasília, Brazil. www.ibama.gov.br/noticias/730-2019/1881-rompimento-de-barragem-da-vale-em-brumadinho-mg-destruiu-269-84-hectares. Acessed 15 Apr 2019 [in Portuguese]

  • Kearey P, Brooks M, Hill I (2002) An introduction to geophysical exploration. Wiley-Blackwall Science, New York

    Google Scholar 

  • Knödel K, Lange G, Voigt HJ (2007) Enviromental geology—handbook of fields methods and case studies. Springer, Berlin

    Google Scholar 

  • Lewis B (2014) Small dams: planning, construction and maintenance. CRC Press, Melbourne

    Google Scholar 

  • Lghoul M, Teixidó T, Peña JA, Hakkou R, Kchikach A, Guérin R, Jaffal M, Zouhri L (2012) Electrical and seismic tomography used to image the structure of a tailings pond at the abandoned Kettara Mine, Morocco. Mine Water Environ 31:53–61. https://doi.org/10.1007/s10230-012-0172-x

    Article  Google Scholar 

  • Lin CP, Hung YC, Yu ZH, Wu PL (2013) Investigation of abnormal seepages in an earth dam using resistivity tomography. J Geol Eng 8:61–70

    Google Scholar 

  • Lin CH, Lin CP, Hung YC, Chung CC, Wu PL, Liu HC (2018) Application of geophysical methods in a dam project: life cycle perspective and Taiwan experience. J Appl Geophys. https://doi.org/10.1016/j.jappgeo.2018.07.012

    Article  Google Scholar 

  • Loke MH (2000) Electrical imaging surveys for environmental and engineering studies. A practical guide to 2-D and 3-D surveys

  • Lowrie W (2007) Fundamentals of geophysics, 2nd edn. Cambridge University Press, New York City

    Book  Google Scholar 

  • Mainali G (2006) Monitoring of tailings dams with geophysical methods. Thesis, Luleå University of Technology

  • Minsley BJ, Burton BL, Ikard S, Powers MH (2011) Geophysical investigations at Hidden Dam, Raymond, California: Summary of fieldwork and data analysis. USGS Open File Report 2010–2013. https://pubs.er.usgs.gov/publication/ofr20101013

  • Moreira CA, Gonçalves LC, Lopes TC, Melo LI (2017) DC resistivity investigation in a fractured aquifer system contaminated by leachate from an old dump. Geofis Int 56:345–358

    Google Scholar 

  • Mussett AE, Khan MA (2000) Looking into the earth: an introduction to geological geophysics. Cambridge University Press, New York City

    Book  Google Scholar 

  • Oh S, Sun CG (2007) Combined analysis of electrical resistivity and geotechnical SPT blow counts for the safety assessment of fill dam. Environ Geol 54:31–42

    Article  Google Scholar 

  • Oliveira AMS, Brito SNA (1998) Geologia de engenharia. ABGE Press, São Paulo ([in Portuguese])

    Google Scholar 

  • Osazuwa IB, Chinedu AD (2008) Seismic refraction tomography imaging of high-permeability zones beneath an earthen dam, in Zaria area, Nigeria. J Appl Geophys 66:44–58

    Article  Google Scholar 

  • Ozcan NT, Ulusay R, Isik NS (2013) A study on a geotechnical characterization and stability of downstream slope of a tailings dam to improve its storage capacity (Turkey). Environ Earth Sci 69:1871–1890

    Article  Google Scholar 

  • Sammarco OA (2004) Tragic disaster caused by the failure of tailings dams leads to the formation of the Stava 1985 foundation. Mine Water Environ 23:91–95. https://doi.org/10.1007/s10230-004-0045-z

    Article  Google Scholar 

  • Sentenac P, Benes V, Keenan H (2018) Reservoir assessment using non-invasive geophysical techniques. Environ Earth Sci 77:293. https://doi.org/10.1007/s12665-018-7463-x

    Article  Google Scholar 

  • Sjödahl P, Dahlin T, Johansson S (2005) Using resistivity measurements for dam safety evaluation at Enemossen tailings dam in southern Sweden. Environ Geol 49:267–273. https://doi.org/10.1007/s00254-005-0084-1

    Article  Google Scholar 

  • Thompson S, Kulessa B, Luckman A (2012) Integrated electrical resistivity tomography (ERT) and self-potential (SP) techniques for assessing hydrological processes within glacial lake moraine dams. J Glaciol 58:849–858. https://doi.org/10.3189/2012JoG11J235

    Article  Google Scholar 

  • Waber N, Schorscher HD, Peters T (1992) Hydrothermal and supergene uranium mineralization at the Osamu Utsumi mine, Poços de Caldas, Minas Gerais, Brazil. J Geochem Explor 45:53–112

    Article  Google Scholar 

  • Wei Z, Yin G, Wan L, Li G (2016) A case study on a geotechnical investigation of drainage methods for hightening a tailing dam. Environ Earth Sci 75:106. https://doi.org/10.1007/s12665-015-5029-8

    Article  Google Scholar 

  • World Nuclear Association (2020) World Nuclear Performance Report 2020. www.world-nuclear.org/information-library/current-and-future-generation/plans-for-new-reactors-worldwide.aspx Acessed 19 Jun 2020

  • Zarroca M, Linares R, López PCV, Roqué C, Rodríguez R (2014) Application of electrical resistivity imaging (ERI) to a tailings dam project for artisanal and small-scale gold mining in Zaruma-Portovelo, Ecuador. J Appl Geophys 113:103–113. https://doi.org/10.1016/j.jappgeo.2014.11.022

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Foundation for Research Support of the State of Sao Paulo (Fundação de Amparo a Pesquisa do Estado de São Paulo—FAPESP process No. 2018 / 14565-3) and the INB for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Lemos Camarero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arcila, E.J.A., Moreira, C.A., Camarero, P.L. et al. Identification of Flow Zones Inside and at the Base of a Uranium Mine Tailings Dam Using Geophysics. Mine Water Environ 40, 308–319 (2021). https://doi.org/10.1007/s10230-020-00746-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-020-00746-y

Keywords

Navigation