Advertisement

Mine Water and the Environment

, Volume 37, Issue 2, pp 288–299 | Cite as

Risk Evaluation of Bed-Separation Water Inrush: A Case Study in the Yangliu Coal Mine, China

  • Qiuyu Lu
  • Xiaoqin Li
  • Wenping Li
  • Wei Chen
  • Luanfei Li
  • Shiliang Liu
Technical Article

Abstract

Water that accumulates in the void space where overburden strata separate can be an inrush source. We established an engineering geology model of bed-separation water inrush, and chose five factors (hard rock thickness, coal seam thickness, aquifuge thickness, aquifer thickness and hydrostatic head) as risk factors. Additionally, based on an analysis of hydrogeological and engineering geological conditions at two areas in the Yangliu coal mine, the comprehensive weight values of these factors were found to be 0.32, 0.24, 0.18, 0.15, and 0.11, respectively, using fuzzy analytic hierarchy process and entropy method. Finally, the data were normalized, and a zoning map for risk evaluation was created using the space superposition function of GIS. This method was further used to evaluate the risk at the Haizi coal mine, and the results were in accordance with an inrush disaster that occurred at the 745 working face at that mine. This validated the model’s practical applications. This provides mines with strategies to prevent and control bed-separation water inrush.

Keywords

Engineering geological model Yangliu coal mine Fuzzy analytic hierarchy process (FAHP) Entropy method (EM) 

Risikobewertung des Wassereinbruchs aus Aufblätterungszonen: Eine Fallstudie im Kohlebergwerk Yangliu, China

Zusammenfassung

Wasser, das sich in Hohlräumen sammelt, an denen sich Abraumschichten voneinander trennen, kann eine Quelle für Wassereinbrüche sein. Wir haben ein ingenieurgeologisches Modell für Wassereinbrüche aus Aufblätterungszonen erstellt und fünf Faktoren als Risikofaktoren gewählt (Mächtigkeit des Festgesteins, der Kohleflöze, der Aquifuge, des Aquifers sowie hydrostatischer Druck). Basierend auf einer Auswertung der hydrogeologischen und ingenieurgeologischen Bedingungen in zwei Bereichen der Kohlegrube Yangliu wurden mit Hilfe eines Fuzzy-Hierarchieanalyseverfahrens und der Entropie-Methode die umfassenden Wichtungswerte dieser fünf Risikofaktoren zu 0,32, 0,24, 0,18, 0,15 bzw. 0,11 bestimmt. Schließlich wurden die Daten normalisiert und eine Zonierungskarte für die Risikobewertung mit Hilfe der Raumüberlagerungsfunktion von GIS erstellt. Dieses Verfahren wurde weiter verwendet, um das Risiko in der Haizi-Kohlemine zu bewerten, und die Ergebnisse stimmten mit einer Wassereinbruchskatastrophe überein, die bei der Arbeitsebene 745 in dieser Mine auftrat. Dadurch konnte das Modell für die praktische Anwendung validiert werden. Bergwerken stehen damit Strategien zur Verhinderung und Kontrolle von Wassereinbrüchen aus Aufblätterungszonen zur Verfügung.

Evaluación del riesgo de irrupción de agua separada del lecho: un estudio de caso en la mina de carbón Yangliu, China

Resumen

El agua que se acumula en el espacio vacío donde se separan los estratos puede ser una fuente de irrpución. Establecimos un modelo geológico ingenieril de la entrada de agua de separación de lecho y elegimos cinco factores (espesor de roca dura, espesor de la veta de carbón, espesor de la capa acuífera, espesor del acuífero y cabeza hidrostática) como factores de riesgo. Además, en base a un análisis de las condiciones geológicas hidrogeológicas y de ingeniería en dos áreas en la mina de carbón Yangliu, se otorgaron pesos a estos factores de 0,32, 0,24, 0,18, 0,15 y 0,11, respectivamente, utilizando el proceso de jerarquía analítica difusa y el método de entropía. Finalmente, los datos se normalizaron y se creó un mapa de zonificación para la evaluación de riesgos utilizando la función de superposición espacial de GIS. Este método se usó posteriormente para evaluar el riesgo en la mina de carbón Haizi y los resultados concordaron con los correspondientes a un desastre de irrupción de agua que ocurrió en el frente de trabajo 745 en esa mina. Esto validó las aplicaciones prácticas del modelo. Esto proporciona estrategias para prevenir y controlar la entrada de agua por separación de lecho en las minas.

离层水害危险性评价-以中国杨柳煤矿为例

摘要

积聚在上覆离层空腔中的水可以形成突水的水源。本文建立了离层水害评价的工程地质模型, 选取了5个评价因素,包括硬岩厚度、煤层厚度、隔水层厚度、含水层厚度和静压水头。基于对杨柳煤矿两个采区水文地质和工程地质条件分析,利用模糊层次分析法和熵权法,得出5个因素的综合权重分别为0.32, 0.24, 0.18, 0.15, 0.11。利用GIS的空间叠加功能,将数据进行归一化处理,得到研究区离层水害危险性评价分区图。运用这种方法对海孜煤矿进行危险性评价,结果与745工作面发生的水害事故吻合,证明该方法具有实用性,为矿山防治离层突水提供了对策。

Notes

Acknowledgements

Financial support for this work was provided by the Natural Science Foundation of China (no. 41602309), the National Basic Research Program of China (no. 2015CB251601), the Fundamental Research Funds of the State Key Program of National Natural Science of China (no. 41430643), and the Priority Academic Program Development of Jiangsu Higher Education Institutions. The authors also thank the reviewers for their useful comments.

References

  1. Cao DT (2013) Hydrostatic water-inrush in bed separation and its prevention and control. Hydrogeol Eng Geol 40(2):9–12 (in Chinese) Google Scholar
  2. Chen ZH, Xu H, Sun CL (2017) Study on characteristics of water inflow change in Chongqing Yutianbao coal mine. Chin Min Mag 26(3):151–156 (in Chinese) Google Scholar
  3. Fan Y, Luo Y, Chen Q (2000) Discussion on quantification method of evaluating vulnerability indexes of hazard bearing body. J Catastrophol 15(2):78–80Google Scholar
  4. Fang DC, Liu GL, Zhang LP (2004) The application of information entropy in investment decision. Value Eng 2:115–117 (in Chinese) Google Scholar
  5. Gui H, Lin M, Song X (2017) Features of separation water hazard in China coalmines. Water Pract Technol 12(1):146–155CrossRefGoogle Scholar
  6. Guo TH, Fan XL (2012) Hydrogeological characteristics and first mining district working face water inflow analysis in Hongliu coalmine, Ningxia. Coal Geol Chin 24(5):30–34 (in Chinese) Google Scholar
  7. Jiang JQ, Wang P, Wu QL, Zhang PP (2015) Evolution laws and prediction of separated stratum space under overlying high-position magmatic rocks. Chin J Geotech Eng 37(10):1769–1779 (in Chinese) Google Scholar
  8. Jing JD, Shi LQ, Li ZB, Liu TB, Wei JC, Li SC (2006) Mechanism of water inrush from roof in Huafeng mine. J Chin Univ Min Technol 35(5):642–647 (in Chinese) Google Scholar
  9. Li W (2006) Cause of special water inrush accident occurred in Haizi mine and countermeasures. Coal Sci Technol 34(1):35–38 (in Chinese) Google Scholar
  10. Li XQ (2011) Study on the Inrush Mechanism of the Water in Bed Separation due to Repeated Coal Mining under Hard Rock. Ph.D. Dissertation, China University of Mining and Technology (in Chinese) Google Scholar
  11. Li WP, Li XQ, Sun RH (2008) Preliminary study on dynamic water inrush of coal mining under super-thick hard rock. J Eng Geol 16(S1):446–450 (in Chinese) Google Scholar
  12. Li LP, Zhou ZQ, Li SC, Xue YG, Xu ZH, Shi SS (2015) An attribute synthetic evaluation system for risk assessment of floor water inrush in coal mines. Mine Water Environ 34(3):288–294CrossRefGoogle Scholar
  13. Lin Q, Qiao W (2016) Water prevention and control technology of roof bed separation in Cuimu mine. Coal Sci Technol 44(3):129–134 (in Chinese) Google Scholar
  14. Liu SL, Li WP, Wang QQ (2017) Height of the water-flowing fractured zone of the Jurassic coal seam in northwestern China. Mine Water Environ.  https://doi.org/10.1007/s10230-017-0501-1 Google Scholar
  15. Qiao W, Li WP, Li XQ (2011) Mechanism of “hydrostatic water-inrush” and countermeasures for water inrush in roof bed separation of a mining face. J Min Safe Eng 28(1):96–104 (in Chinese) Google Scholar
  16. Qiao W, Huang Y, Yuan Z, Guo W, Zhou D (2014) Formation and prevention of water inrush from roof bed separation with full-mechanized caving mining of ultra-thick coal seam. Chin J Geotech Eng 33(10):2076–2084 (in Chinese) Google Scholar
  17. Qiao W, Li WP, Li T, Chang JY, Wang QQ (2017) Effects of coal mining on shallow water resources in semiarid regions: a case study in the Shennan Mining Area, Shaanxi, China. Mine Water Environ 36(1):104–113CrossRefGoogle Scholar
  18. Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15(3):234–281CrossRefGoogle Scholar
  19. Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York, pp 112–155Google Scholar
  20. Shannon CE (1948) A mathematical theory of communications. ATT Tech J 27(3):379–423Google Scholar
  21. Wang L, Cheng YP, Xu C, An FH, Jin K, Zhang XL (2013) The controlling effect of thick-hard igneous rock on pressure relief gas drainage and dynamic disasters in outburst coal seams. Nat Hazards 66(2):1221–1241CrossRefGoogle Scholar
  22. Wu Q, Liu Y, Liu D, Zhou W (2011) Prediction of floor water inrush: the application of GIS-based AHP vulnerable index method to Donghuantuo coal mine, China. Rock Mech Rock Eng 44(5):591–600CrossRefGoogle Scholar
  23. Wu Q, Fan S, Zhou W, Liu S (2013) Application of the analytic hierarchy process to assessment of water inrush: a case study for the no. 17 coal seam in the Sanhejian coal mine, China. Mine Water Environ 32(3):229–238CrossRefGoogle Scholar
  24. Xie XD (1992) On the roof fissure water inrush of Nantong coal mine. Mine Surv 2:15–19 (in Chinese) Google Scholar
  25. Xu JL, Qian MG, Jin HW (2004) Study and application of bed separation distribution and development in the process of strata movement. Chin J Geotech Eng 26:632–636 (in Chinese) Google Scholar
  26. Yan H, He F, Yang T, Li L, Zhang S, Zhang J (2016) The mechanism of bedding separation in roof strata overlying a roadway within a thick coal seam: a case study from the Pingshuo Coalfield, China. Eng Fail Anal 62:75–92CrossRefGoogle Scholar
  27. Yang Q, Qiao W, Le J, Guo W (2014) Analysis on formation condition of water in roof bed separation in fully mechanized face of extra-thick seam and evaluation of its risk. Min Safe Env Protect 41(3):64–67 (in Chinese) Google Scholar
  28. Yuan YL (2013) Research on the construction engineering project risk management based on fuzzy analytic hierarchy process. Ph.D. Dissertation, Chongqing University (in Chinese) Google Scholar
  29. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353CrossRefGoogle Scholar
  30. Zhang JJ (2000) Fuzzy analytical hierarchy process. Fuzzy Syst Math 14(2):80–88 (in Chinese) Google Scholar
  31. Zhang WM, An JW, Han C (2003) The application of entropy weight on the assessment of urban sustainable development. Quant Tech Econ 6:115–118 (in Chinese) Google Scholar
  32. Zhang S, Zhang M, Chi GT (2010) The science and technology evaluation model based on entropy weight and empirical research during the 10th five-year of China. Chin J Manag 1:34–42Google Scholar
  33. Zhang Z, Liu QM, Jin ZY (2014) Separation development features and genetic mechanism of water hazards under thick layer of hard roof. J Heilongjiang Univ Sci Technol 24(2):182–186 (in Chinese) Google Scholar
  34. Zhu WB, Wang XZ, Kong X, Liu WT (2009) Study of mechanism of stope water inrush caused by water accumulation in overburden separation areas. Chin J Rock Mech Eng 28(2):306–311 (in Chinese) Google Scholar
  35. Zou ZH, Yi Y, Sun JN (2006) Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. J Environ Sci 18(5):1020–1010CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qiuyu Lu
    • 1
  • Xiaoqin Li
    • 1
  • Wenping Li
    • 1
  • Wei Chen
    • 2
  • Luanfei Li
    • 1
  • Shiliang Liu
    • 1
  1. 1.State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Resources and GeoscienceChina University of Mining and TechnologyXuzhouPeople’s Republic of China
  2. 2.School of Geology and EnvironmentXi’an University of Science and TechnologyXi’anPeople’s Republic of China

Personalised recommendations