Skip to main content
Log in

Prediction of Pyrite Oxidation in a Coal Washing Waste Pile Applying Artificial Neural Networks (ANNs) and Adaptive Neuro-fuzzy Inference Systems (ANFIS)

Die Anwendung von Künstlichen Neuralen Netzen (ANNs) und Adaptiven Netzbasierten Fuzzy Interface Sytemen (ANFIS-Modellen) bei der Vorhersage der Pyritoxidation in einer Kohlenwaschhalde

Predicción de la oxidación de pirita en los residuos del proceso de lavado de carbón aplicando redes neuronales artificiales (ANNs) y sistemas de inferencia neuro-difusa (ANFIS)

洗煤厂废石堆中黄铁矿氧化过程的人工神经网络(ANNS)和自适应神经模糊推理系统(ANFIS)预测

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Two models were evaluated as alternative methods for predicting pyrite oxidation in the Alborz Sharghi coal washing waste pile (in northeastern Iran). The first model applies a ‘feed-forward artificial neural network (ANN) with 4-7-1 structure’. The model uses depth, initial remaining pyrite fraction, mole fraction of oxygen, and annual precipitation as input parameters and returns the remaining pyrite fraction in the related depth of the pile as its output. In the second model, an adaptive neuro-fuzzy inference system (ANFIS), which uses generalised bell membership functions and the Takagi–Sugeno-type fuzzy inference system, was applied with the same input–output parameters. The correlation coefficient, root mean squared error, and average absolute relative error for the training stage of the ANNs were 0.81, 0.169, and 0.12, respectively, while the values for ANFIS were 0.91, 0.091, and 0.078, respectively. Comparison of the correlation coefficients and the error parameters revealed that both models successfully predicted remaining pyrite fraction from various depths of the pile. However, ANFIS was found to be more reliable and more accurate.

Zusammenfassung

Zwei Modelle werden am Beispiel der Alborz-Shargi Kohlenwaschhalde als alternative Methoden zur Vorhersage von Pyritoxidationsprozessen beurteilt. Im ersten Modell werden vorwärtsbetriebene künstliche neurale Netze (ANN, „artificial neural network“) mit 4-7-1 Strukturen verwendet. Als Eingangsparameter gehen Tiefenangaben, die Anfangsmenge der Pyritfraktion, die Stoffmenge an Sauerstoff und der Jahresniederschlag in die Modelle ein. Berechnet wird die verbleibende Pyritmenge in verschiedenen Tiefen der Halde. Im zweiten Modell wird das ANFIS-Modell (Adaptives netzbasiertes Fuzzy Interface System) mit verallgemeinerter Glockenkurvenfunktion und dem Fuzzy System vom Takagi–Sugeno-Typ als Eingangs- bzw. Ausgangsparameter verwendet. Die zuerst genutzten Korrelationskoeffizienten, mittleren quadratischen Abweichungen und mittleren relativen Fehler betrugen für das ANN-Modell 0,81, 0,169 sowie 0,12 und für das ANFIS-Modell 0,91, 0,091 sowie 0,078. Der Vergleich der Korrelationskoeffizienten und der Fehlerparameter zeigt, dass beide Modelle die verbleibende Pyritfraktion in den jeweiligen Tiefen zufriedenstellend berechnen können. Die Ergebnisse des ANFIS Modells erscheinen jedoch verlässlicher.

Resúmen

Dos modelos fueron evaluados como métodos alternativos para predecir la oxidación de pirita en la pila de residuos del proceso de lavado de carbón Alborz Sharghi (en el noreste de Irán). El primer modelo aplica a red neuronal artificial pre-alimentada (ANN) con estructura 4-7-1. El modelo usa la profundidad, la fracción remanente de pirita, la fracción molar de oxígeno y la precipitación anual como parámetros de entrada y la fracción remanente de pirita en la profundidad requerida como salida de la red. En el segundo modelo, un sistema de inferencia neuro-difusa adaptado (ANFIS), que usa funciones generalizadas con forma de campana y el sistema de interferencia difusa Takagi–Sugeno, se aplicó con los mismos parámetros de entrada y salida. El coeficiente de correlación, la raíz del error cuadrático medio y el error relativo promedio para la etapa de entrenamiento del ANNs fueron 0,81, 0,169 y 0,12, respectivamente, mientras que los valores para ANFIS fueron 0,91, 0,091 y 0,078, respectivamente. La comparación de los coeficientes de correlación y los errores en los parámetros revelaron que ambos modelos predicen exitosamente la fracción remanente de pirita a diferentes profundidades de la pila. Sin embargo, ANFIS fue más preciso y confiable.

抽象

利用两种模型预测了伊朗东北部Alborz Sharghi洗煤厂废石堆中黄铁矿的氧化过程。第一个模型运用前馈人工神经网络(feed-forward artificial neural network,ANN)4-7-1模型,以黄铁矿埋深、黄铁矿初始残余量、氧摩尔浓度和降水量为输入参数,以废石堆内相应埋深的残余黄铁矿量为输出值。第二个模型采用自适应神经模糊推理系统(adaptive neuro- fuzzy inference system,ANFIS)的钟形隶属函数和Takagi–Sugeno型模糊推理系统,选用同样的输入和输出参数。ANNS方法学习阶段的相关系数、均方根误差、平均相对误差绝对值分别为0.81、0.169和 0.12,而ANFIS方法学习阶段的上述检验值分别为0.91、0.09和0.078。比较两个模型的相关系数和误差值发现,两个模型都成功地预测了废石堆中不同埋深残余黄铁矿含量,而且ANFIS方法更可靠和准确。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Cathles LM, Apps JA (1975) A model of the dump leaching process that incorporates oxygen balance, heat balance and air convection. Metall Trans B 6:617–624

    Article  Google Scholar 

  • Cheng CH, Wei LY (2010) One step-ahead ANFIS time series model for forecasting electricity loads. Optim Eng 11:303–307

    Article  Google Scholar 

  • Davis GB, Ritchie AIM (1986) A model of oxidation in pyritic mine wastes. Part 1: equations and approximate solution. Appl Math Model 10(5):314–322

    Article  Google Scholar 

  • Demuth H, Beale M (2002) Neural network toolbox for use with Matlab. The Mathworks, Inc., Natick, MA

  • Doulati Ardejani F, Singh RN, Baafi EY (2004) Use of PHOENICS for solving one-dimensional mine pollution problems. J Comput Fluid Dyn Appl 16:1–23

    Google Scholar 

  • Doulati Ardejani F, Jodeiri Shokri B, Moradzadeh A, Soleimani E, Ansari Jafari M (2008) A combined mathematical geophysical model for prediction of pyrite oxidation and pollutant leaching associated with a coal washing waste dump. Int J Environ Sci Tech 5(4):517–526

    Article  Google Scholar 

  • Doulati Ardejani F, Jodeiri Shokri B, Bagheri M, Soleimani E (2010) Investigation of pyrite oxidation and acid mine drainage characterization associated with Razi active coal mine and coal washing waste dumps in the Azad shahr–Ramian region, northeast Iran. Environ Earth Sci 61:1547–1560

    Article  Google Scholar 

  • Doulati Ardejani F, Rooki R, Jodeiri Shokri B, Eslam Kish T, Aryafar A, Tourani P (2013) Prediction of rare earth elements in neutral alkaline mine drainage from Razi Coal Mine, Golestan Province, northeast Iran, using general regression neural network. J Environ Eng 139(6):896–907

    Article  Google Scholar 

  • Elberling B, Nicholson RV, Scharer JM (1994) A combined kinetic and diffusion model for pyrite oxidation in tailings: a change in controls with time. J Hydro 157(1):47–60

    Article  Google Scholar 

  • Gerke HH, Molson JW, Frind EO (2001) Modelling the impact of physical and chemical heterogeneity on solute leaching in pyritic overburden mine spoils. Ecol Eng 17:91–101

    Article  Google Scholar 

  • Gladfelter WL, Dickerhoof DW (1976) Use of atomic absorption spectrometry for iron determinations in coals. Fuel 55(4):360–361

    Article  Google Scholar 

  • Haykin S (1991) Neural networks: a comprehensive foundation. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Heddam S, Bermad A, Dechemi N (2012) ANFIS-based modelling for coagulant dosage in drinking water treatment plant: a case study. Environ Monit Assess 184:1953–1971

    Article  Google Scholar 

  • Jang JSR (1992) Neuro-fuzzy modeling: architecture, analyses and applications, PhD Dissertation, University of California, Berkeley

  • Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685

    Article  Google Scholar 

  • Jang JSR, Sun CT (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Jaynes DB, Rogowski AS, Pionke HB (1984) Acid mine drainage from reclaimed coal strip mines 2. Simulation results of model. Water Res Res 20(2):243–250

    Article  Google Scholar 

  • Ju J, Ryu H (2006) A study on subjective assessment of knit fabric by ANFIS. Fiber Polym 7(2):203–212

    Article  Google Scholar 

  • Karimpouli S, Fathianpour N, Roohi J (2010) A new approach to improve neural networks’ algorithm in permeability prediction of petroleum reservoirs using supervised committee machine neural network (SCMNN). J Petrol Sci Eng 73:227–232

    Article  Google Scholar 

  • Lo SP (2002) The application of an ANFIS and grey system method in turning tool-failure detection. Int J Adv Manuf Technol 19:564–572

    Article  Google Scholar 

  • Mamdani EH (1974) Applications of fuzzy algorithm for control of a simple dynamic plant. Proc IEEE 121(12):1585–1588

    Google Scholar 

  • Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man Mach Study 7(1):1–13

    Article  Google Scholar 

  • Montgomery DC, Peck EA (1992) Introduction to linear regression analysis, 2nd edit. Wiley-Interscience, NYC

    Google Scholar 

  • Nagendra S, Mukesh Khare SM (2006) Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions. Ecol Model 190:99–115

    Article  Google Scholar 

  • Nikravesh M (2004) Soft computing-based computational intelligent for reservoir characterization. Exp Sys Appl 26:19–38

    Article  Google Scholar 

  • Rainfall Data of Semnan Province (2012) Semnan Regional Water Co, Research and Lab Centre

  • Sadeghiamirshahidi M, Eslam Kish T, Doulati Ardejani F (2013) Application of artificial neural networks to predict pyrite oxidation in a coal washing refuse pile. Fuel 104:163–169

    Article  Google Scholar 

  • Shahhoseiny M, Doulati Ardejani F, Shafaei SZ, Noaparast M, Hamidi D (2013) Geochemical and mineralogical characterization of a pyritic waste pile at the Anjir Tangeh coal washing plant, Zirab, northern Iran. Mine Water Environ 32(2):84–96

    Article  Google Scholar 

  • Sheoran AS, Sheoran V (2006) Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Miner Eng 19:105–116

    Article  Google Scholar 

  • Singh RN, Doulati Ardejani F (2004) Finite volume discretisation for solving acid mine drainage problems. Arch Min Sci 49(4):531–556

    Google Scholar 

  • Sugeno M, Kang GT (1988) Structure identification of fuzzy model. Fuzzy Sets Syst 28(1):15–33

    Article  Google Scholar 

  • Sugeno M, Tanaka K (1991) Successive identification of a fuzzy model and its application to prediction of complex systems. Fuzzy Sets Syst 42:315–334

    Article  Google Scholar 

  • Tahmasebi P, Hezarkhani A (2010) Application of adaptive neuro-fuzzy inference system for grade estimation; case study, sarcheshmeh porphyry copper deposit, Kerman, Iran. Aus J Basic Appl Sci 4(3):408–420

    Google Scholar 

  • Tahmasebi P, Hezarkhani A (2012) A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation. Comput Geosci 42:18–27

    Article  Google Scholar 

  • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15(1):116–132

    Article  Google Scholar 

  • Yao HM, Vuthaluru HB, Tade MO, Djukanovic D (2005) Artificial neural network-based prediction of hydrogen content of coal in power station boilers. Fuel 84:1535–1542

    Google Scholar 

  • Young VR (1996) Insurance rate changing: a fuzzy logic approach. J Risk Insur 63:461–483

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inform Control 8:338–353

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the technical support of both Amirkabir University of Technology and Shahrood University of Technology. We also thank the Alborz Sharghi Coal Company for their support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Ramazi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jodeiri Shokri, B., Ramazi, H., Doulati Ardejani, F. et al. Prediction of Pyrite Oxidation in a Coal Washing Waste Pile Applying Artificial Neural Networks (ANNs) and Adaptive Neuro-fuzzy Inference Systems (ANFIS). Mine Water Environ 33, 146–156 (2014). https://doi.org/10.1007/s10230-013-0247-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-013-0247-3

Keywords

Navigation