Skip to main content

Advertisement

Log in

Exploring students’ science motivation across grade levels and the role of inductive reasoning in science motivation

  • Published:
European Journal of Psychology of Education Aims and scope Submit manuscript

A Correction to this article was published on 25 September 2021

This article has been updated

Abstract

The purpose of this study is to explore students’ motivation towards science learning at different grade levels and to investigate whether inductive reasoning can contribute to an explanation of science motivation. The study conducted a cross-sectional assessment in six public schools in Vietnam with a total population of 813 students from the 5th, 7th, 9th, 10th and 11th grades. Students completed instruments in either paper-and-pencil or online administration modes. An adapted science motivation questionnaire comprised five subscales for self-efficacy, active learning strategies, science learning value, achievement goals and learning environment stimulation. An inductive reasoning test consisted of four subtests: figure series completion, figure analogies, number analogies and number series completion. The results of confirmatory factor analyses and Rasch model measurement showed that the instruments were adequate fit models, both the science motivation questionnaire (RMSEA=.054, CFI=.919, SRMR=.055) and inductive reasoning test (RMSEA=.038, CFI=.902, SRMR=.044). We found that students’ scores gradually fell grade by grade in science motivation throughout the grade cohorts. Particularly, students’ motivation dropped noticeably on the self-efficacy and active learning strategies subscales. No gender difference was found between males and females in science motivation. Although a positive correlation was observed between inductive reasoning and motivation across grade levels, multi-model Bayesian inference suggested that other factors, such as age, science performance and parental involvement, were better predictors of students’ science motivation. Furthermore, a path analysis showed that inductive reasoning has an indirect effect on science motivation through a science performance variable. The implications for enhancing science motivation are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  • Acharya, N., & Joshi, S. (2009). Influence of parents’ education on achievement motivation of adolescents. Indian Journal Social Science Researches, 6(1), 72–79.

    Google Scholar 

  • Adams, R., & August, M. W. (2010). Modelling a dichotomously scored multiple choice test with the Rasch model. ConQuest.

  • Adams, R., & Wu, M. (2010). Modelling polytomously scored items with the rating scale and partial credit models. Letzter Zugriff Am, 30, 2015.

    Google Scholar 

  • Adey, P., & Csapó, B. (2012). Developing and assessing scientific reasoning. In B. Csapó & G. Szabó (Eds.), Framework for diagnostic assessment of science (pp. 17–53). Nemzeti Tankönyvkiadó.

  • Anderman, E. M., & Dawson, H. (2011). Learning with motivation. In R. E. Mayer & P. A. Alexander (Eds.), Handbook of research on learning and instruction (pp. 219–242). Taylor & Francis.

  • Andressa, H., Mavrikaki, E., & Dermitzaki, I. (2016). Adaptation of the students’ motivation towards science learning questionnaire to measure Greek students’ motivation towards biology learning. International Journal Of Biology Education, 4(2). https://doi.org/10.20876/ijobed.56334.

  • Assembly, V. N. (2006). Luật Giáo dục 2005 [Education Law 2005]. The Publication of Labour and Society.

  • Baltes, P. B. (1968). Longitudinal and cross-sectional sequences in the study of age and generation effects. Human Development, 11(3), 145–171.

    Article  Google Scholar 

  • Bathgate, M., & Schunn, C. (2017). The psychological characteristics of experiences that influence science motivation and content knowledge. International Journal of Science Education, 39(17), 2402–2432. https://doi.org/10.1080/09500693.2017.1386807.

    Article  Google Scholar 

  • Becker, M., McElvany, N., & Kortenbruck, M. (2010). Intrinsic and extrinsic reading motivation as predictors of reading literacy: A longitudinal study. Journal of Educational Psychology, 102(4), 773–785. https://doi.org/10.1037/a0020084.

    Article  Google Scholar 

  • Bouffard, T., Boileau, L., & Vezeau, C. (2001). Students’ transition from elementary to high school and changes of the relationship between motivation and academic performance. European Journal of Psychology of Education, 16(4), 589–604. https://doi.org/10.1007/BF03173199.

    Article  Google Scholar 

  • Britner, S. L. (2008). Motivation in high school science students: A comparison of gender differences in life, physical, and earth science classes. Journal of Research in Science Teaching, 45(8), 955–970. https://doi.org/10.1002/tea.20249.

    Article  Google Scholar 

  • Cavas, P. (2011). Factors affecting the motivation of Turkish primary students for science learning. Science Education International, 22(1), 31–42.

    Google Scholar 

  • Chan, Y. L., & Norlizah, C. (2018). Students’ motivation towards science learning and students’ science achievement. International Journal of Academic Research in Progressive Education and Development, 6(4), 174–189. https://doi.org/10.6007/IJARPED/v6-i4/3716.

    Article  Google Scholar 

  • Chapman, J. W. (1988). Cognitive-motivational characteristics and academic achievement of learning disabled children: A longitudinal study. Journal of Educational Psychology, 80(3), 357–365. https://doi.org/10.1037/0022-0663.80.3.357.

    Article  Google Scholar 

  • Chraif, M., & Dumitru, D. (2015). Differences between motivation from competition and motivation from individual goals under the influence of inductive reasoning. Procedia - Social and Behavioral Sciences, 187(2015), 745–751. https://doi.org/10.1016/j.sbspro.2015.03.157.

    Article  Google Scholar 

  • Clark, M. H., Middleton, S. C., Nguyen, D., & Zwick, L. K. (2014). Mediating relationships between academic motivation, academic integration and academic performance. Learning and Individual Differences, 33, 30–38. https://doi.org/10.1016/j.lindif.2014.04.007.

    Article  Google Scholar 

  • Core Team, R. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing Retrieved from https://www.r-project.org/.

  • Csapó, B. (1997). The development of inductive reasoning: Cross-sectional assessments in an educational context. International Journal of Behavioral Development, 20(4), 609–626. https://doi.org/10.1080/016502597385081.

    Article  Google Scholar 

  • Csapó, B., & Molnár, G. (2019). Online diagnostic assessment in support of personalized teaching and learning: The eDia system. Frontiers in Psychology, 10(JULY)., 10. https://doi.org/10.3389/fpsyg.2019.01522.

  • Csapó, B., Molnár, G., & Tóth, K. R. (2009). Comparing paper-and-pencil and online assessment of reasoning skills: A pilot study for introducing electronic testing in large-scale assessment in Hungary. The Transition to Computer-Based Assessment: New Approaches to Skills Assessment and Implications for Large-Scale Testing, 2, 120–125.

    Google Scholar 

  • Csapó, B., Hotulainen, R., Pásztor, A., & Molnár, G. (2019). Az induktív gondolkodás fejlődésének összehasonlító vizsgálata: online felmérések Magyarországon és Finnországban [A comparative study of the development of inductive thinking: online surveys in Hungary and Finland]. Neveléstudomány [Educational Science: Education Research Innovation], 7(3–4), 5–24.

    Article  Google Scholar 

  • Datu, J. A. D., King, R. B., & Valdez, J. P. M. (2018). Psychological capital bolsters motivation, engagement, and achievement: Cross-sectional and longitudinal studies. The Journal of Positive Psychology, 13(3), 260–270. https://doi.org/10.1080/17439760.2016.1257056.

    Article  Google Scholar 

  • Deng, L., & Yuan, K.-H. (2016). Comparing latent means without mean structure models: A projection-based approach. Psychometrika, 81(3), 802–829. https://doi.org/10.1007/s11336-015-9491-8.

    Article  Google Scholar 

  • Dermitzaki, I., Stavroussi, P., Vavougios, D., & Kotsis, K. T. (2013). Adaptation of the students’ motivation towards science learning (SMTSL) questionnaire in the Greek language. European Journal of Psychology of Education, 28(3), 747–766. https://doi.org/10.1007/s10212-012-0138-1.

    Article  Google Scholar 

  • Díaz-Morales, J. F., & Escribano, C. (2013). Predicting school achievement: The role of inductive reasoning, sleep length and morningness-eveningness. Personality and Individual Differences, 55(2), 106–111. https://doi.org/10.1016/j.paid.2013.02.011.

    Article  Google Scholar 

  • Dorfman, B. S., & Fortus, D. (2019). Students’ self-efficacy for science in different school systems. Journal of Research in Science Teaching, (January), 1037–1059., 56(8), 1037–1059. https://doi.org/10.1002/tea.21542.

  • Du, N. N. (2015). Factors influencing teaching for critical thinking in Vietnamese lower secondary schools: A mixed method study focussed on history (Unpublished doctoral dissertation). Newcastle University.

  • Duckworth, A. L., Grant, H., Loew, B., Oettingen, G., & Gollwitzer, P. M. (2011). Self-regulation strategies improve self-discipline in adolescents: Benefits of mental contrasting and implementation intentions. Educational Psychology, 31(1), 17–26. https://doi.org/10.1080/01443410.2010.506003.

    Article  Google Scholar 

  • Dunn, T. J., Baguley, T., & Brunsden, V. (2014). From alpha to omega: A practical solution to the pervasive problem of internal consistency estimation. British Journal of Psychology, 105(3), 399–412. https://doi.org/10.1111/bjop.12046.

    Article  Google Scholar 

  • Eccles, J. S., & Wigfield, A. (2002). Motivational beliefs, values, and goals. Annual Review of Psychology, 53(1), 109–132. https://doi.org/10.1146/annurev.psych.53.100901.135153.

    Article  Google Scholar 

  • Fan, W., & Williams, C. M. (2010). The effects of parental involvement on students’ academic self-efficacy, engagement and intrinsic motivation. Educational Psychology, 30(1), 53–74. https://doi.org/10.1080/01443410903353302.

    Article  Google Scholar 

  • Fan, W., Williams, C. M., & Wolters, C. A. (2012). Parental involvement in predicting school motivation: Similar and differential effects across ethnic groups. The Journal of Educational Research, 105(1), 21–35. https://doi.org/10.1080/00220671.2010.515625.

    Article  Google Scholar 

  • Gagné, F., & St Père, F. (2001). When IQ is controlled, does motivation still predict achievement? Intelligence, 30(1), 71–100. https://doi.org/10.1016/S0160-286(01)00068-X.

    Article  Google Scholar 

  • Ganzach, Y. (2000). Parents’ education, cognitive ability, educational expectations and educational attainment: Interactive effects. British Journal of Educational Psychology, 70(3), 419–441. https://doi.org/10.1348/000709900158218.

    Article  Google Scholar 

  • Garcia, T., & Pintrich, P. R. (1995). The role of possible selves in adolescents’ perceived competence and self-regulation. Annual Meeting of the American Research Association.

  • Genell, A., Nemes, S., Steineck, G., & Dickman, P. W. (2010). Model selection in medical research: A simulation study comparing Bayesian model averaging and stepwise regression. BMC Medical Research Methodology, 10(1), 108. https://doi.org/10.1186/1471-2288-10-108.

    Article  Google Scholar 

  • Glynn, S. M., Taasoobshirazi, G., & Brickman, P. (2009). Science motivation questionnaire: Construct validation with nonscience majors. Journal of Research in Science Teaching, 46(2), 127–146. https://doi.org/10.1002/tea.20267.

    Article  Google Scholar 

  • Glynn, S. M., Brickman, P., Armstrong, N., & Taasoobshirazi, G. (2011). Science motivation questionnaire II: Validation with science majors and nonscience majors. Journal of Research in Science Teaching, 48(10), 1159–1176. https://doi.org/10.1002/tea.20442.

    Article  Google Scholar 

  • Gonida, E. N., & Urdan, T. (2007). Parental influences on student motivation, affect and academic behaviour: Introduction to the Special Issue. European Journal of Psychology of Education, 22(1), 3–6. https://doi.org/10.1007/BF03173685.

    Article  Google Scholar 

  • Gonzalez-DeHass, A. R., Willems, P. P., & Holbein, M. F. D. (2005). Examining the relationship between parental involvement and student motivation. Educational Psychology Review, 17(2), 99–123. https://doi.org/10.1007/s10648-005-3949-7.

    Article  Google Scholar 

  • Gottfried, A. E., Fleming, J. S., & Gottfried, A. W. (2001). Continuity of academic intrinsic motivation from childhood through late adolescence: A longitudinal study. Journal of Educational Psychology, 93(1), 3–13. https://doi.org/10.1037/0022-0663.93.1.3.

    Article  Google Scholar 

  • Griffin, P. (2010). Item response modelling: An introduction to the Rasch model. Assessment Research Centre Faculty of Education, The University of Melbourne.

  • Hair, J. F., William, J., Barry, C. B., Rolph, J. B., & Anderson, E. (2010). Multivariate data analysis. Pearson.

  • Hamers, J. H. M., De Koning, E., & Sijtsma, K. (1998). Inductive reasoning in third grade: Intervention promises and constraints. Contemporary Educational Psychology, 23(2), 132–148. https://doi.org/10.1006/ceps.1998.0966.

    Article  Google Scholar 

  • Heckhausen, J., Wrosch, C., & Schulz, R. (2010). A motivational theory of life-span development. Psychological Review, 117(1), 32–60. https://doi.org/10.1037/a0017668.

    Article  Google Scholar 

  • Hernesniemi, E., Räty, H., Kasanen, K., Cheng, X., Hong, J., & Kuittinen, M. (2020). Students’ achievement motivation in Finnish and Chinese higher education and its relation to perceived teaching-learning environments. Scandinavian Journal of Psychology, 61(2), 204–217. https://doi.org/10.1111/sjop.12580.

    Article  Google Scholar 

  • Hoang, K. M., Nguyen, H. T., & La, T. T. (2014). Parent and teacher communication: A case study in Vietnam. In W. J., X. B., & W. B. (Ed.), Innovative Management in Information and Production (pp. 305–313). New York, NY. https://doi.org/10.1007/978-1-4614-4857-0_33.

  • Hoffman, B. (2015). The developmental trajectory of motivation. In Motivation for Learning and Performance (Vol. 5, pp. 79–106). Elsevier Inc. https://doi.org/10.1016/b978-0-12-800779-2.00004-x.

  • Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55. https://doi.org/10.1080/10705519909540118.

    Article  Google Scholar 

  • Hwang, M. H., Choi, H. C., Lee, A., Culver, J. D., & Hutchison, B. (2016). The relationship between self-efficacy and academic achievement: A 5-year panel analysis. The Asia-Pacific Education Researcher, 25(1), 89–98. https://doi.org/10.1007/s40299-015-0236-3.

    Article  Google Scholar 

  • Ifenthaler, D., & Seel, N. M. (2011). A longitudinal perspective on inductive reasoning tasks. Illuminating the probability of change. Learning and Instruction, 21(4), 538–549. https://doi.org/10.1016/j.learninstruc.2010.08.004.

    Article  Google Scholar 

  • International Labour Organization. (2020). Leading to success: The business case for women in business and management in Viet Nam. Hanoi. https://ilo.org/hanoi/Whatwedo/Publications/WCMS_761063/lang--en/index.htm

  • Jiang, G., Mai, Y., & Yuan, K.-H. (2017). Advances in measurement invariance and mean comparison of latent variables: Equivalence testing and a projection-based approach. Frontiers in Psychology, 8(OCT), 1–13. https://doi.org/10.3389/fpsyg.2017.01823.

    Article  Google Scholar 

  • Józsa, K. (2014). Developing new scales for assessing English and German language mastery motivation. In J. Horváth & P. Medgyes (Eds.), Studies in honour of Marianne Nikolov. Pécs.

  • Józsa, K., Kis, N., & Huang, S. (2017). Mastery motivation in school subjects in Hungary and Taiwan. Hungarian Educational Research Journal, 7(2), 158–177. https://doi.org/10.14413/HERJ/7/2/10.

    Article  Google Scholar 

  • Józsa, K., Kis, N., & Barrett, K. C. (2019). Mastery motivation, parenting, and school achievement among Hungarian adolescents. European Journal of Psychology of Education, 34(2), 317–339. https://doi.org/10.1007/s10212-018-0395-8.

    Article  Google Scholar 

  • Kambeyo, L. (2018). Assessing Namibian students ’ abilities in scientific reasoning, scientific inquiry and inductive reasoning skills (Unpublished doctoral dissertation). University of Szeged.

  • Kambeyo, L., & Wu, H. (2018). Online assessment of students’ inductive reasoning skills abilities in Oshana region , Namibia. International Journal of Educational Sciences (Int J Edu Sci), 21, 1–12 https://doi.org/11.258359/KRE-86.

    Google Scholar 

  • King, R. B., & Ganotice, F. A. (2014). What’s happening to our boys? A personal investment analysis of gender differences in student motivation. Asia-Pacific Education Researcher, 23(1), 151–157. https://doi.org/10.1007/s40299-013-0127-4.

    Article  Google Scholar 

  • Kinshuk, L. T., & Mcnab, P. (2006). Cognitive trait modelling: The case of inductive reasoning ability. Innovations in Education and Teaching International, 43(2), 151–161. https://doi.org/10.1080/14703290600650442.

    Article  Google Scholar 

  • Klauer, K. J., & Phye, G. D. (2008). Inductive reasoning: A training approach. Review of Educational Research, 78(1), 85–123. https://doi.org/10.3102/0034654307313402.

    Article  Google Scholar 

  • Korom, E. B., Németh, M., Pásztor, A., & Csapó, B. (2017). Relationship between scientific and inductive reasoning in grades 5 and 7. In In Paper Presented at the 17th Biennial Conference of the European Association for Research on Learning and Instruction (EARLI). University of Tampere.

  • Kriegbaum, K., Becker, N., & Spinath, B. (2018). The relative importance of intelligence and motivation as predictors of school achievement: A meta-analysis. Educational Research Review, 25(October), 120–148. https://doi.org/10.1016/j.edurev.2018.10.001.

    Article  Google Scholar 

  • Maxwell, S. E., & Cole, D. A. (2007). Bias in cross-sectional analyses of longitudinal mediation. Psychological Methods, 12(1), 23–44. https://doi.org/10.1037/1082-989X.12.1.23.

  • McCallum, R. S. (2017). Handbook of nonverbal assessment. In R. S. McCallum (Ed.), Handbook of Nonverbal Assessment. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-50604-3.

  • Mehraj, A. B. (2016). The predictive power of reasoning ability on academic achievement. International Journal of Learning, Teaching and Educational Research, 15(1), 79–88.

    Google Scholar 

  • Mo, J. (2019). How is students’ motivation related to their performance and anxiety ? In PISA in Focus, No. 92. https://doi.org/10.1787/d7c28431-en.

  • Mollohan, K. N. (2015). Epistemologies and scientific reasoning skills among undergraduate science students. The Ohio State University.

  • Molnár, G., & Csapó, B. (2011). Az 1–11 évfolyamot átfogó induktív gondolkodás kompetenciaskála készítése a valószínűségi tesztelmélet alkalmazásával [Constructing inductive reasoning competency scales for years 1–11 using IRT models]. Magyar Pedagógia, 111(2), 127–140.

    Google Scholar 

  • Molnár, G., Greiff, S., & Csapó, B. (2013). Inductive reasoning, domain specific and complex problem solving: Relations and development. Thinking Skills and Creativity, 9, 35–45. https://doi.org/10.1016/j.tsc.2013.03.002.

    Article  Google Scholar 

  • Manuel Morales, with code developed by the R Development Core Team, with general advice from the R. listserv, & Murdoch., community and especially D. (2020). sciplot: Scientific graphing functions for factorial designs. Retrieved from https://cran.r-project.org/package=sciplot

  • Muniz, M., Seabra, A. G., & Primi, R. (2012). Validity and reliability of the inductive reasoning test for children - IRTC. Psicologia: Reflexão e Crítica, 25(2), 275–285. https://doi.org/10.1590/s0102-79722012000200009.

    Article  Google Scholar 

  • Nikolov, M., & Csapó, B. (2018). The relationships between 8th graders’ L1 and L2 reading skills, inductive reasoning and socio-economic status in early English and German as a foreign language programs. System, 73, 48–57. https://doi.org/10.1016/j.system.2017.11.001.

    Article  Google Scholar 

  • Nikou, S. A., & Economides, A. A. (2016). The impact of paper-based, computer-based and mobile-based self-assessment on students’ science motivation and achievement. Computers in Human Behavior, 55, 1241–1248. https://doi.org/10.1016/j.chb.2015.09.025.

    Article  Google Scholar 

  • Nunes, T., & Csapó, B. (2011). Developing and assessing mathematical reasoning. In B. Csapó & M. Szendrei (Eds.), Framework for diagnostic assessment of mathematics (pp. 15–76). Budapest: Nemzeti Tankönyvkiadó

  • OECD. (2016). PISA 2015 results (Volume I): Excellence and equity in Education. Paris: OECD Publishing. https://doi.org/10.1787/9789264266490-en.

  • OECD. (2017a). Parental involvement, student performance and satisfaction with life. In PISA 2015 Results (Volume III): Students’ Well-Being (Vol. III, pp. 155–171). Paris: OECD Publishing. https://doi.org/10.1787/9789264273856-13-en

  • OECD. (2017b). PISA 2015 results students’ well-being (Vol. III). OECD. https://doi.org/10.1787/9789264273856-en.

  • Peetsma, T., Hascher, T., van der Veen, I., & Roede, E. (2005). Relations between adolescents’ self-evaluations, time perspectives, motivation for school and their achievement in different countries and at different ages. European Journal of Psychology of Education, 20(3), 209–225. https://doi.org/10.1007/BF03173553.

    Article  Google Scholar 

  • Phan, T. (2004). A qualitative study of Vietnamese parental involvement and their high academic achieving children. Journal of Authentic Learning, 1, 51–61.

    Google Scholar 

  • Pintrich, P. R., & Schunk, D. H. (2002). Motivation in education: Theory, research, and applications. Prentice Hall.

  • Preckel, F., Goetz, T., Pekrun, R., & Kleine, M. (2008). Gender differences in gifted and average-ability students. Gifted Child Quarterly, 52(2), 146–159. https://doi.org/10.1177/0016986208315834.

    Article  Google Scholar 

  • Raftery, A., Hoeting, J., Volinsky, C., Painter, I., & Yeung, K. Y. (2020). BMA: Bayesian model averaging. Retrieved from https://cran.r-project.org/package=BMA

  • Revelle, W. (2019). psych: Procedures for psychological, psychometric, and personality research. Northwestern University Retrieved from https://cran.r-project.org/package=psych.

  • Robinson, K. A., Lee, Y., Bovee, E. A., Perez, T., Walton, S. P., Briedis, D., & Linnenbrink-Garcia, L. (2019). Motivation in transition: Development and roles of expectancy, task values, and costs in early college engineering. Journal of Educational Psychology, 111(6), 1081–1102. https://doi.org/10.1037/edu0000331.

    Article  Google Scholar 

  • Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36 Retrieved from http://www.jstatsoft.org/v48/i02/.

    Article  Google Scholar 

  • Schwartz, S. J., & Waterman, A. S. (2006). Changing interests: A longitudinal study of intrinsic motivation for personally salient activities. Journal of Research in Personality, 40(6), 1119–1136. https://doi.org/10.1016/j.jrp.2005.12.003.

    Article  Google Scholar 

  • Schweizer, F., Wüstenberg, S., & Greiff, S. (2013). Validity of the MicroDYN approach: Complex problem solving predicts school grades beyond working memory capacity. Learning and Individual Differences, 24, 42–52. https://doi.org/10.1016/j.lindif.2012.12.011.

    Article  Google Scholar 

  • Shaakumeni, S. N., & Csapó, B. (2018). A cross-cultural validation of adapted questionnaire for assessing motivation to learn science. African Journal of Research in Mathematics, Science and Technology Education, 22(3), 340–350. https://doi.org/10.1080/18117295.2018.1533157.

    Article  Google Scholar 

  • Soodmand Afshar, H., Rahimi, A., & Rahimi, M. (2014). Instrumental motivation, critical thinking, autonomy and academic achievement of Iranian EFL learners. Issues in Educational Research, 24(3), 281–298.

    Google Scholar 

  • Spinath, B., Spinath, F. M., Harlaar, N., & Plomin, R. (2006). Predicting school achievement from general cognitive ability, self-perceived ability, and intrinsic value. Intelligence, 34(4), 363–374. https://doi.org/10.1016/j.intell.2005.11.004.

    Article  Google Scholar 

  • Sternberg, R. J. (1986). Toward a unified theory of human reasoning. Intelligence, 10(4), 281–314.

    Article  Google Scholar 

  • Sternberg, R. J., & Sternberg, K. (2012). Faraday communications. Proposal of a chiral structure for the fullerene C76. In Cognitive Psychology. Cengage Learning products. https://doi.org/10.1039/ft9918702861.

  • Tsai, L.-T., Yang, C.-C., & Chang, Y.-J. (2015). Gender differences in factors affecting science performance of eighth grade Taiwan students. The Asia-Pacific Education Researcher, 24(2), 445–456. https://doi.org/10.1007/s40299-014-0196-z.

    Article  Google Scholar 

  • Tuan, H. L., Chin, C. C., & Shieh, S. H. (2005). The development of a questionnaire to measure students’ motivation towards science learning. International Journal of Science Education, 27(6), 639–654. https://doi.org/10.1080/0950069042000323737.

    Article  Google Scholar 

  • UNESCO. (2011). World data on Education. Retrieved from http://www.ibe.unesco.org/fileadmin/user_upload/Publications/WDE/2010/pdf-versions/Viet_Nam.pdf

  • Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3(1), 4–70. https://doi.org/10.1177/109442810031002.

    Article  Google Scholar 

  • Venville, G., & Oliver, M. (2015). The impact of a cognitive acceleration programme in science on students in an academically selective high school. Thinking Skills and Creativity, 15(2015), 48–60. https://doi.org/10.1016/j.tsc.2014.11.004.

    Article  Google Scholar 

  • Vo, D. V., & Csapó, B. (2020). Development of inductive reasoning in students across school grade levels. Thinking Skills and Creativity, 37(2020), 100699. https://doi.org/10.1016/j.tsc.2020.100699.

    Article  Google Scholar 

  • Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York. Retrieved from https://ggplot2.tidyverse.org

  • Wu, H., & Molnár, G. (2018). Interactive problem solving: Assessment and relations to combinatorial and inductive reasoning. Journal of Psychological and Educational Research, 26(1), 90–105.

    Google Scholar 

  • Yuan, K.-H., Chan, W., Marcoulides, G. A., & Bentler, P. M. (2016). Assessing structural equation models by equivalence testing with adjusted fit indexes. Structural Equation Modeling: A Multidisciplinary Journal, 23(3), 319–330. https://doi.org/10.1080/10705511.2015.1065414.

    Article  Google Scholar 

  • Zeyer, A. (2010). Motivation to learn science and cognitive style. Eurasia Journal of Mathematics, Science and Technology Education, 6(2), 123–130. https://doi.org/10.12973/ejmste/75233.

    Article  Google Scholar 

  • Zeyer, A., & Wolf, S. (2010). Is there a relationship between brain type, sex and motivation to learn science? International Journal of Science Education, 32(16), 2217–2233. https://doi.org/10.1080/09500690903585184.

    Article  Google Scholar 

Download references

Acknowledgements

The first author of this article is a recipient of the Hungarian government’s Stipendium Hungaricum Scholarship in collaboration with the Vietnamese government. The authors would like to thank two reviewers for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De Van Vo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

De Van Vo. Doctoral School of Education, University of Szeged, 32-34. Petőfi S. sgt., Szeged H-6722, Hungary; An Giang University - Vietnam Nation University Ho Chi Minh City, 18 Ung Van Khiem St, Dong Xuyen Ward, Long Xuyen City, An Giang Province, Vietnam. E-mail: vo.de.van@edu.u-szeged.hu. ORCID: 0000-0002-8515-0221.

Current themes of research:

Inductive reasoning. Scientific reasoning. Problem solving.

Most relevant publications in the field of Psychology of Education:

Vo, D.V., & Csapó, B. (2020). Development of inductive reasoning in students across school grade levels. Thinking Skills and Creativity, 37(2020), 100699. https://doi.org/10.1016/j.tsc.2020.100699

Benő Csapó. Institute of Education, University of Szeged, 32-34. Petőfi S. sgt., Szeged H-6722, Hungary; MTA-SZTE Research Group on the Development of Competencies, Szeged, Hungary. E-mail: csapo@edpsy.u-szeged.hu. ORCID: 0000-0001-7550-6354.

Current themes of research:

Cognition. Cognitive development. Structure and organization of knowledge. Longitudinal studies. Educational evaluation. Technology-based assessment.

Most relevant publications in the field of Psychology of Education:

Csapó, B., & Molnár, G. (2019). Online diagnostic assessment in support of personalized teaching and learning: The eDia System. Frontiers in Psychology, 10:1522. https://doi.org/10.3389/fpsyg.2019.01522

Molnár, G., & Csapó, B. (2019). Making the psychological dimension of learning visible: Using technology-based assessment to monitor students' cognitive development. Frontiers in Psychology, 10:1368. https://doi.org/10.3389/fpsyg.2019.01368

Csapó, B., Molnár, G., & Nagy, J. (2014). Computer-based assessment of school readiness and early reasoning. Journal of Educational Psychology, 106(2). 639-650. https://doi.org/10.1037/a0035756

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Vo, D., Csapó, B. Exploring students’ science motivation across grade levels and the role of inductive reasoning in science motivation. Eur J Psychol Educ 37, 807–829 (2022). https://doi.org/10.1007/s10212-021-00568-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10212-021-00568-8

Keywords

Navigation