Skip to main content
Log in

Tropical Combinatorial Nullstellensatz and Sparse Polynomials

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Tropical algebra emerges in many fields of mathematics such as algebraic geometry, mathematical physics and combinatorial optimization. In part, its importance is related to the fact that it makes various parameters of mathematical objects computationally accessible. Tropical polynomials play a fundamental role in this, especially for the case of algebraic geometry. On the other hand, many algebraic questions behind tropical polynomials remain open. In this paper, we address four basic questions on tropical polynomials closely related to their computational properties:

  1. 1.

    Given a polynomial with a certain support (set of monomials) and a (finite) set of inputs, when is it possible for the polynomial to vanish on all these inputs?

  2. 2.

    A more precise question, given a polynomial with a certain support and a (finite) set of inputs, how many roots can this polynomial have on this set of inputs?

  3. 3.

    Given an integer k, for which s there is a set of s inputs such that any nonzero polynomial with at most k monomials has a non-root among these inputs?

  4. 4.

    How many integer roots can have a one variable polynomial given by a tropical algebraic circuit?

In the classical algebra well-known results in the direction of these questions are Combinatorial Nullstellensatz due to N. Alon, J. Schwartz–R. Zippel Lemma and Universal Testing Set for sparse polynomials, respectively. The classical analog of the last question is known as \(\tau \)-conjecture due to M. Shub–S. Smale. In this paper, we provide results on these four questions for tropical polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For two nonnegative real-valued functions f(kn) and g(nk), the notation \(f = \varTheta (g)\) means that there are positive constants c and C such that \(cf(k,n) \le g(k,n) \le Cf(k,n)\) for all k and n.

  2. For the sake of completeness, we show how to deduce this fact from Lemma 5.1 in [34]. If the number of rows in the system is less than the number of columns in it, we add several copies of one of equations to make the matrix of the system square. Clearly, this square matrix is singular, and by Lemma 5.1 in [34] (applied to the transposed matrix), the points whose coordinates form the rows of the matrix lie on some tropical hyperplane. The coefficients of this hyperplane form a solution to our linear system.

References

  1. M. Akian, S. Gaubert, and A. Guterman. Linear independence over tropical semirings and beyond. Contemporary Mathematics, 495:1–33, 2009.

    MathSciNet  MATH  Google Scholar 

  2. M. Akian, S. Gaubert, and A. Guterman. Tropical polyhedra are equivalent to mean payoff games.International Journal of Algebra and Computation, 22(1), 2012.

  3. X. Allamigeon, P. Benchimol, S. Gaubert, and M. Joswig. Log-barrier interior point methods are not strongly polynomial. SIAM Journal on Applied Algebra and Geometry, 2(1):140–178, 2018.

    MathSciNet  MATH  Google Scholar 

  4. N. Alon. Combinatorial Nullstellensatz. Comb. Probab. Comput., 8(1–2):7–29, Jan. 1999.

    MathSciNet  MATH  Google Scholar 

  5. S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry. Algorithms and Computation in Mathematics. Springer, 2006.

  6. M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynomial interpolation. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC’88, pages 301–309, New York, NY, USA, 1988. ACM.

  7. F. Bihan. Irrational mixed decomposition and sharp fewnomial bounds for tropical polynomial systems. Discrete & Computational Geometry, 55(4):907–933, 2016.

    MathSciNet  MATH  Google Scholar 

  8. L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1998.

    MATH  Google Scholar 

  9. P. Brass, W. O. J. Moser, and J. Pach. Research problems in discrete geometry. Springer, 2005.

  10. S. Chari, P. Rohatgi, and A. Srinivasan. Randomness-optimal unique element isolation with applications to perfect matching and related problems. SIAM Journal on Computing, 24(5):1036–1050, 1995.

    MathSciNet  MATH  Google Scholar 

  11. R. A. Cuninghame-Green and P. F. J. Meijer. An algebra for piecewise-linear minimax problems. Discrete Applied Mathematics, 2(4):267–294, 1980.

    MathSciNet  MATH  Google Scholar 

  12. A. Davydow and D. Grigoriev. Bounds on the number of connected components for tropical prevarieties. Discrete & Computational Geometry, 57(2):470–493, 2017.

    MathSciNet  MATH  Google Scholar 

  13. M. Develin, F. Santos, and B. Sturmfels. On the rank of a tropical matrix. Combinatorial and computational geometry, 52:213–242, 2005.

    MathSciNet  MATH  Google Scholar 

  14. D. Grigoriev. Complexity of solving tropical linear systems. Computational Complexity, 22(1):71–88, 2013.

    MathSciNet  MATH  Google Scholar 

  15. D. Grigoriev and M. Karpinski. The matching problem for bipartite graphs with polynomially bounded permanents is in NC (extended abstract). In 28th Annual Symposium on Foundations of Computer Science, Los Angeles, California, USA, 27–29 October 1987, pages 166–172, 1987.

  16. D. Grigoriev and V. Podolskii. Complexity of tropical and min-plus linear prevarieties. Computational Complexity, 24(1):31–64, 2015.

    MathSciNet  MATH  Google Scholar 

  17. D. Grigoriev and V. V. Podolskii. Tropical combinatorial Nullstellensatz and fewnomials testing. In Fundamentals of Computation Theory - 21st International Symposium, FCT 2017, Bordeaux, France, September 11–13, 2017, Proceedings, pages 284–297, 2017.

  18. D. Grigoriev and V. V. Podolskii. Tropical effective primary and dual Nullstellensätze. Discrete & Computational Geometry, 59(3):507–552, 2018.

    MathSciNet  MATH  Google Scholar 

  19. D. Y. Grigoriev, M. Karpinski, and M. F. Singer. The interpolation problem for k-sparse sums of eigenfunctions of operators. Advances in Applied Mathematics, 12(1):76 – 81, 1991.

    MathSciNet  MATH  Google Scholar 

  20. R. G. Halburd and N. J. Southall. Tropical Nevanlinna theory and ultradiscrete equations. International Mathematics Research Notices, 2009(5):887–911, 2009.

    MathSciNet  MATH  Google Scholar 

  21. G. Hardy, J. Littlewood, and G. Pólya. Inequalities. Cambridge Mathematical Library. Cambridge University Press, 1988.

    MATH  Google Scholar 

  22. B. Huber and B. Sturmfels. A polyhedral method for solving sparse polynomial systems. Mathematics of Computation, 64:1541–1555, 1995.

    MathSciNet  MATH  Google Scholar 

  23. I. Itenberg, G. Mikhalkin, and E. Shustin. Tropical Algebraic Geometry. Oberwolfach Seminars. Birkhäuser, 2009.

    MATH  Google Scholar 

  24. Z. Izhakian and L. Rowen. The tropical rank of a tropical matrix. Communications in Algebra, 37(11):3912–3927, 2009.

    MathSciNet  MATH  Google Scholar 

  25. E. Kaltofen and L. Yagati. Improved sparse multivariate polynomial interpolation algorithms, pages 467–474. Springer Berlin Heidelberg, Berlin, Heidelberg, 1989.

  26. A. R. Klivans and D. Spielman. Randomness efficient identity testing of multivariate polynomials. In Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing, STOC ’01, pages 216–223, New York, NY, USA, 2001. ACM.

  27. P. Koiran, N. Portier, and S. Tavenas. A Wronskian approach to the real \(\tau \)-conjecture. J. Symb. Comput., 68:195–214, 2015.

    MathSciNet  MATH  Google Scholar 

  28. P. Koiran, N. Portier, S. Tavenas, and S. Thomassé. A \(\tau \) -conjecture for Newton polygons. Foundations of Computational Mathematics, 15(1):185–197, 2015.

    MathSciNet  MATH  Google Scholar 

  29. D. Maclagan and B. Sturmfels. Introduction to Tropical Geometry:. Graduate Studies in Mathematics. American Mathematical Society, 2015.

  30. G. Mikhalkin. Amoebas of algebraic varieties and tropical geometry. In S. Donaldson, Y. Eliashberg, and M. Gromov, editors, Different Faces of Geometry, volume 3 of International Mathematical Series, pages 257–300. Springer US, 2004.

    MATH  Google Scholar 

  31. G. F. Montúfar, R. Pascanu, K. Cho, and Y. Bengio. On the number of linear regions of deep neural networks. In Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages 2924–2932, 2014.

  32. K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as easy as matrix inversion. Combinatorica, 7(1):105–113, 1987.

    MathSciNet  MATH  Google Scholar 

  33. S. Ovchinnikov. Max-min representation of piecewise linear functions. Beitr. Algebra Geom., 43(1):297–302, 2002.

    MathSciNet  MATH  Google Scholar 

  34. J. Richter-Gebert, B. Sturmfels, and T. Theobald. First steps in tropical geometry. Idempotent Mathematics and Mathematical Physics, Contemporary Mathematics, 377:289–317, 2003.

    MathSciNet  MATH  Google Scholar 

  35. J.-J. Risler and F. Ronga. Testing polynomials. Journal of Symbolic Computation, 10(1):1 – 5, 1990.

    MathSciNet  MATH  Google Scholar 

  36. J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM, 27(4):701–717, Oct. 1980.

    MathSciNet  MATH  Google Scholar 

  37. M. Shub and S. Smale. On the intractability of Hilbert’s Nullstellensatz and an algebraic version of \({NP}\ne {P}\)? Duke Math. J., 81(1):47–54, 1995.

    MathSciNet  MATH  Google Scholar 

  38. E. Shustin and Z. Izhakian. A tropical Nullstellensatz. Proceedings of the American Mathematical Society, 135(12):3815–3821, 2007.

    MathSciNet  MATH  Google Scholar 

  39. S. Smale. Mathematical problems for the next century. The Mathematical Intelligencer, 20(2):7–15, Mar 1998.

    MathSciNet  MATH  Google Scholar 

  40. R. Steffens and T. Theobald. Combinatorics and genus of tropical intersections and Ehrhart theory. SIAM Journal on Discrete Mathematics, 24(1):17–32, 2010.

    MathSciNet  MATH  Google Scholar 

  41. B. Sturmfels. Solving Systems of Polynomial Equations, volume 97 of CBMS Regional Conference in Math. American Mathematical Society, 2002.

  42. N. Ta-Shma. A simple proof of the isolation lemma. Electronic Colloquium on Computational Complexity (ECCC), 22:80, 2015.

  43. T. Theobald. On the frontiers of polynomial computations in tropical geometry. J. Symb. Comput., 41(12):1360–1375, 2006.

    MathSciNet  MATH  Google Scholar 

  44. M. Urabe. On a partition into convex polygons. Discrete Applied Mathematics, 64(2):179 – 191, 1996.

    MathSciNet  MATH  Google Scholar 

  45. M. Urabe. Partitioning point sets in space into disjoint convex polytopes. Computational Geometry, 13(3):173 – 178, 1999.

    MathSciNet  MATH  Google Scholar 

  46. P. Valtr. Sets in \({\mathbb{R}}^{d}\) with no large empty convex subsets. Discrete Mathematics, 108(1):115 – 124, 1992.

    MathSciNet  MATH  Google Scholar 

  47. N. Vorobyev. Extremal algebra of positive matrices. Elektron. Informationsverarbeitung und Kybernetik, 3:39–71, 1967.

    MathSciNet  Google Scholar 

  48. R. Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the International Symposiumon on Symbolic and Algebraic Computation, EUROSAM ’79, pages 216–226, London, UK, 1979. Springer-Verlag.

Download references

Acknowledgements

We would like to thank the reviewers for numerous helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Podolskii.

Additional information

Communicated by Teresa Krick.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

An extended abstract of a preliminary version [17] appeared in the proceedings of the 21st International Symposium on Fundamentals of Computation Theory (FCT 2017). The results of Sects. 4 and 6 were obtained by the first author at MCCME and supported by the Russian Science Foundation (Project 16-11-10075). The results of Sects. 3 and 5 were obtained by the second author and were supported by grant MK-5379.2018.1, by the Russian Academic Excellence Project ‘5-100’ and by RFBR Grant 17-51-10005-KO_a.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoriev, D., Podolskii, V.V. Tropical Combinatorial Nullstellensatz and Sparse Polynomials. Found Comput Math 20, 753–781 (2020). https://doi.org/10.1007/s10208-019-09431-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-019-09431-1

Keywords

Mathematics Subject Classification

Navigation