Skip to main content
Log in

Exact Support Recovery for Sparse Spikes Deconvolution

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper studies sparse spikes deconvolution over the space of measures. We focus on the recovery properties of the support of the measure (i.e., the location of the Dirac masses) using total variation of measures (TV) regularization. This regularization is the natural extension of the \(\ell ^1\) norm of vectors to the setting of measures. We show that support identification is governed by a specific solution of the dual problem (a so-called dual certificate) having minimum \(L^2\) norm. Our main result shows that if this certificate is non-degenerate (see the definition below), when the signal-to-noise ratio is large enough TV regularization recovers the exact same number of Diracs. We show that both the locations and the amplitudes of these Diracs converge toward those of the input measure when the noise drops to zero. Moreover, the non-degeneracy of this certificate can be checked by computing a so-called vanishing derivative pre-certificate. This proxy can be computed in closed form by solving a linear system. Lastly, we draw connections between the support of the recovered measure on a continuous domain and on a discretized grid. We show that when the signal-to-noise level is large enough, and provided the aforementioned dual certificate is non-degenerate, the solution of the discretized problem is supported on pairs of Diracs which are neighbors of the Diracs of the input measure. This gives a precise description of the convergence of the solution of the discretized problem toward the solution of the continuous grid-free problem, as the grid size tends to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. https://github.com/gpeyre/2013-FOCM-SparseSpikes/.

References

  1. J-M. Azais, Y. De Castro, and F. Gamboa. Spike detection from inaccurate samplings. Applied and Computational Harmonic Analysis, to appear, 2014.

  2. B.N. Bhaskar and B. Recht. Atomic norm denoising with applications to line spectral estimation. In 2011 49th Annual Allerton Conference on Communication, Control, and Computing, pages 261–268, 2011.

  3. T. Blu, P.-L. Dragotti, M. Vetterli, P. Marziliano, and L. Coulot. Sparse sampling of signal innovations. IEEE Signal Processing Magazine, 25(2):31–40, 2008.

  4. K. Bredies and H.K. Pikkarainen. Inverse problems in spaces of measures. ESAIM: Control, Optimisation and Calculus of Variations, 19(1):190–218, 2013.

  5. H. Brézis, P.G. Ciarlet, and J.L. Lions. Analyse fonctionnelle: Théorie et applications. Collection Mathématiques appliquées pour la maîtrise. Dunod, 1999.

  6. M. Burger and S. Osher. Convergence rates of convex variational regularization. Inverse Problems, 20(5):1411–1421, 2004.

  7. E. J. Candès and C. Fernandez-Granda. Super-resolution from noisy data. Journal of Fourier Analysis and Applications, 19(6):1229–1254, 2013.

  8. E. J. Candès and C. Fernandez-Granda. Towards a mathematical theory of super-resolution. Communications on Pure and Applied Mathematics, 67(6):906–956, 2014.

  9. S.S. Chen, D.L. Donoho, and M.A. Saunders. Atomic decomposition by basis pursuit. SIAM journal on scientific computing, 20(1):33–61, 1999.

  10. J. F. Claerbout and F. Muir. Robust modeling with erratic data. Geophysics, 38(5):826–844, 1973.

  11. L. Condat and A. Hirabayashi. Cadzow denoising upgraded: A new projection method for the recovery of dirac pulses from noisy linear measurements. Sampling Theory in Signal and Image Processing, to appear, 2014.

  12. Y. de Castro and F. Gamboa. Exact reconstruction using beurling minimal extrapolation. Journal of Mathematical Analysis and Applications, 395(1):336–354, 2012.

  13. L. Demanet, D. Needell, and N. Nguyen. Super-resolution via superset selection and pruning. CoRR, abs/1302.6288, 2013.

  14. D. L. Donoho. Superresolution via sparsity constraints. SIAM J. Math. Anal., 23(5):1309–1331, September 1992.

  15. C. Dossal and S. Mallat. Sparse spike deconvolution with minimum scale. In Proceedings of SPARS, pages 123–126, November 2005.

  16. M. F. Duarte and R. G. Baraniuk. Spectral compressive sensing. Applied and Computational Harmonic Analysis, 35(1):111–129, 2013.

  17. I. Ekeland and R. Témam. Convex Analysis and Variational Problems. Number, vol. 1 in Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, 1976.

  18. A. Fannjiang and W. Liao. Coherence pattern-guided compressive sensing with unresolved grids. SIAM J. Img. Sci., 5(1):179–202, February 2012.

  19. C. Fernandez-Granda. Support detection in super-resolution. Proc. Proceedings of the 10th International Conference on Sampling Theory and Applications, pages 145–148, 2013.

  20. J.J. Fuchs. On sparse representations in arbitrary redundant bases. IEEE Transactions on Information Theory, 50(6):1341–1344, 2004.

  21. M. Grasmair, O. Scherzer, and M. Haltmeier. Necessary and sufficient conditions for linear convergence of \(\ell _1\)-regularization. Communications on Pure and Applied Mathematics, 64(2):161–182, 2011.

  22. B. Hofmann, B. Kaltenbacher, C. Poschl, and O. Scherzer. A convergence rates result for tikhonov regularization in Banach spaces with non-smooth operators. Inverse Problems, 23(3):987, 2007.

  23. S. Levy and P. Fullagar. Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution. Geophysics, 46(9):1235–1243, 1981.

  24. J. Lindberg. Mathematical concepts of optical superresolution. Journal of Optics, 14(8):083001, 2012.

  25. D. A. Lorenz and D. Trede. Greedy Deconvolution of Point-like Objects. In Rémi Gribonval, editor, SPARS’09, Saint Malo, France, 2009.

  26. J. W. Odendaal, E. Barnard, and C. W. I. Pistorius. Two-dimensional superresolution radar imaging using the MUSIC algorithm. IEEE Transactions on Antennas and Propagation, 42(10):1386–1391, October 1994.

  27. S.C. Park, M.K. Park, and M.G. Kang. Super-resolution image reconstruction: a technical overview. IEEE Signal Processing Magazine, 20(3):21–36, 2003.

  28. F. Santosa and W.W. Symes. Linear inversion of band-limited reflection seismograms. SIAM Journal on Scientific and Statistical Computing, 7(4):1307–1330, 1986.

  29. O. Scherzer and B. Walch. Sparsity regularization for radon measures. In Scale Space and Variational Methods in Computer Vision, volume 5567 of Lecture Notes in Computer Science, pages 452–463. Springer, Berlin Heidelberg, 2009.

  30. G. Tang, B. Narayan Bhaskar, and B. Recht. Near minimax line spectral estimation. CoRR, abs/1303.4348, 2013.

  31. R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society. Series B. Methodological, 58(1):267–288, 1996.

  32. P. Turán. On rational polynomials. Acta Univ. Szeged, Sect. Sci. Math., pages 106–113, 1946.

  33. S. Vaiter, G. Peyré, C. Dossal, and J. Fadili. Robust sparse analysis regularization. IEEE Transactions on Information Theory, 59(4):2001–2016, 2013.

  34. P. Zhao and B. Yu. On model selection consistency of Lasso. J. Mach. Learn. Res., 7:2541–2563, December 2006.

Download references

Acknowledgments

The authors would like to thank Jalal Fadili, Charles Dossal, and Samuel Vaiter for fruitful discussions. This work has been supported by the European Research Council (ERC Project SIGMA-Vision).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Duval.

Additional information

Communicated by Emmanuel Candès.

Appendices

Appendix 1: Auxiliary results

For the convenience of the reader, we give here the proofs of several auxiliary results which are needed in the discussion.

Proposition 12

(Subdifferential of the total variation) Let us endow \(\mathcal {M}(\mathbb {T})\) with the weak-* topology and \(C(\mathbb {T})\) with the weak topology. Then, for any \(m\in \mathcal {M}(\mathbb {T})\), we have:

$$\begin{aligned} \partial || m ||_{\text {TV}} = \left\{ \eta \in C(\mathbb {T}) \;;\; || \eta ||_{\infty } \leqslant 1 \quad \text {and} \quad \int \eta \, \mathrm {d}m =|| m ||_{\text {TV}} \right\} . \end{aligned}$$

Proof

Let \(A= \left\{ \eta \in C(\mathbb {T}) \;;\; \forall m\in \mathcal {M}(\mathbb {T}), \ \langle \eta ,\,m\rangle \leqslant || m ||_{\text {TV}} \right\} \). It is clear that \(B_\infty (0,1)\subset A\), where \(B_\infty (0,1)\) is the \(L^\infty (\mathbb {T})\) closed unit ball. Conversely, we observe that \(A\subset B_\infty (0,1)\) by considering the Dirac masses \((\pm \delta _t)_{t\in \mathbb {T}}\).

Let us write \(J(m):= || m ||_{\text {TV}}\). The function \(J:\mathcal {M}(\mathbb {T})\rightarrow \mathbb {R}\cup \{+\infty \}\) is convex, proper, lower semi-continuous (for the weak-* topology), positively homogeneous and:

$$\begin{aligned} J^*(\eta )&=\sup _{m\in \mathcal {M}(\mathbb {T})} \sup _{t>0} \left( \langle \eta ,\,t m\rangle -J(t m) \right) \\&=\sup _{t>0} t\left( \sup _{m\in \mathcal {M}(\mathbb {T})} \langle \eta ,\,m\rangle -J(m) \right) \\&=\left\{ \begin{array}{ll}0 &{}\quad \text{ if } \eta \in A, \\ +\infty &{}\quad \text{ otherwise. } \end{array}\right. \end{aligned}$$

By Proposition I.5.1 in [17], for any \(\eta \in C(\mathbb {T})\):

$$\begin{aligned} \eta \in \partial J(m) \Longleftrightarrow \langle \eta ,\,m\rangle = J(m) +J^*(\eta ), \end{aligned}$$

which is equivalent to \(|| \eta ||_{\infty }\leqslant 1\) and \(\int \eta \mathrm {d}m = || m ||_{\text {TV}}\). \(\square \)

Proposition 13

There exists a solution to \((\mathcal {P}_0(y_0))\) and the strong duality holds between \((\mathcal {P}_0(y_0))\) and \((\mathcal {D}_0(y_0))\), i.e.,

$$\begin{aligned} \underset{\varPhi (m)=y_0}{\min }\; || m ||_{\text {TV}} = \underset{|| \varPhi ^* p ||_{\infty }\leqslant 1}{\sup }\; \langle y_0,\,p\rangle . \end{aligned}$$
(48)

Moreover, if a solution \(p^\star \) to \((\mathcal {D}_0(y_0))\) exists,

$$\begin{aligned} \varPhi ^* p^\star \in \partial {|| m^\star ||_{\text {TV}}} \end{aligned}$$
(49)

where \(m^\star \) is any solution to \((\mathcal {P}_0(y_0))\). Conversely, if (49) holds, then \(m^\star \) and \(p^\star \) are solutions of, respectively, \((\mathcal {P}_0(y_0))\) and \((\mathcal {D}_0(y_0))\).

Proof

We apply [17, Theorem II.4.1] to \((\mathcal {D}_0(y_0))\) (and not to \((\mathcal {P}_0(y_0))\) as would be natural) rewritten as

$$\begin{aligned} \inf _{|| \varPhi ^* p ||_{\infty } \leqslant 1} \langle -y_0,\,p\rangle , \end{aligned}$$

The infimum is finite since for any admissible \(p\), \(\langle -y_0,\,p\rangle =\langle m_0,\,\varPhi p\rangle \geqslant - || m_0 ||_{\text {TV}}\). Let \(V=L^2(\mathbb {T})\), \(Y=C(\mathbb {T})\) (endowed with the strong topology), \(Y^*=\mathcal {M}(\mathbb {T})\), \(F(u)=\langle -y_0,\,u\rangle \) for \(u\in V\), \(G(\psi )=\iota _{|| \cdot ||_{\infty }\leqslant 1}(\psi )\) for \(\psi \in Y\) and \(\Lambda =\varPhi ^*\). It is clear that \(F\) and \(G\) are proper convex lower semi-continuous functions. Eventually, \(F\) is finite at 0, G is finite and continuous at \(0=\Lambda 0\). Hence the result. \(\square \)

Appendix 2: Proof of Proposition 6

Assume that for some \((u,v)\in \mathbb {R}^N\times \mathbb {R}^N\), \(\varGamma _x (u,v)=0\). Then,

$$\begin{aligned} \forall \,t\in \mathbb {T}, \quad 0&=\sum _{j=1}^N \left( u_j\varphi (t-x_j)+v_j \varphi '(t-x_j)\right) \\&=\sum _{k=-f_c}^{f_c} \left( \sum _{j=1}^N (u_j + 2ik\pi v_j)e^{-2ik\pi x_j} \right) e^{2ik\pi t} \end{aligned}$$

We deduce that

$$\begin{aligned} \forall \,k\in \{-f_c,\ldots f_c \}, \quad \sum _{j=1}^N (u_j + k \tilde{v}_j)r_j^k =0 \quad \text {where} \quad \left\{ \begin{array}{l} r_j=e^{-2i\pi x_j},\\ \tilde{v}_j=2i\pi v_j. \end{array} \right. \end{aligned}$$

It is therefore sufficient to prove that the columns of the following matrix are linearly independent

$$\begin{aligned} \begin{pmatrix} r_1^{-f_c} &{} \ldots &{}r_N^{-f_c} &{} (-f_c)r_1^{-f_c}&{} \ldots &{}(-f_c)r_N^{-f_c} \\ \vdots &{} &{}\vdots &{} \vdots &{} &{}\vdots \\ r_1^{k} &{} \ldots &{}r_N^{k} &{} kr_1^{k}&{} \ldots &{}k r_N^{k} \\ \vdots &{} &{}\vdots &{} \vdots &{} &{}\vdots \\ r_1^{f_c} &{} \ldots &{}r_N^{f_c} &{} (f_c)r_1^{f_c}&{} \ldots &{}(f_c)r_N^{f_c} \\ \end{pmatrix}. \end{aligned}$$

If \(N<f_c\), we complete the family \(\{r_1, \ldots r_N\}\) in a family \(\{r_0,r_1,\ldots r_{f_c}\}\subset \mathbb {S}^1\) such that the \(r_i\)’s are pairwise distinct. We obtain a square matrix \(M\) by inserting the corresponding columns

$$\begin{aligned} M = \begin{pmatrix} r_1^{-f_c} &{} \ldots &{}r_{f_c}^{-f_c} &{} r_0^{-f_c} &{}(-f_c)r_1^{-f_c}&{} \ldots &{}(-f_c)r_{f_c}^{-f_c} \\ \vdots &{} &{}\vdots &{}\vdots &{} \vdots &{} &{}\vdots \\ r_1^{k} &{} \ldots &{}r_{f_c}^{k} &{} r_0^k &{}kr_1^{k}&{} \ldots &{}k r_{f_c}^{k} \\ \vdots &{} &{}\vdots &{}\vdots &{} \vdots &{} &{}\vdots \\ r_1^{f_c} &{} \ldots &{}r_{f_c}^{f_c} &{} r_0^{f_c}&{}(f_c)r_1^{f_c}&{} \ldots &{}(f_c)r_{f_c}^{f_c} \\ \end{pmatrix}. \end{aligned}$$

We claim that \(M\) is invertible. Indeed, if there exists \(\alpha \in \mathbb {C}^{(2f_c+1)}\) such that \(M^T \alpha =0\), then the rational function \(F(z) = \sum _{k=-f_c}^{f_c} \alpha _k z^{k}\) satisfies:

$$\begin{aligned} F(r_j)&=0 \quad \text {and} \quad F'(r_j)=0 \ \text{ for } 1\leqslant j \leqslant f_c,\\ F(r_0)&=0. \end{aligned}$$

Hence, \(F\) has at least \(2f_c+1\) roots in \(\mathbb {S}^1\), counting the multiplicities. This imposes that \(F=0\), thus \(\alpha =0\), and \(M\) is invertible. The result is proved.

Appendix 3: Proof of Proposition 9

Let us denote by \(P_{C_n}(x)\) the projection of \(x\in L^2(\mathbb {T})\) onto \(C_n\). We have:

$$\begin{aligned} \left\| P_{C_n}\left( \frac{y_0}{\lambda }\right) -P_{C_n}(0)\right\| _2 \leqslant \left\| \frac{y_0}{\lambda } - 0\right\| _2, \end{aligned}$$

so that the sequence \(p_{\lambda }^{\mathcal {G}_n}=P_{C_n}(\frac{y_0}{\lambda })\) is bounded in \(L^2(\mathbb {T})\), and we may extract a subsequence \(p_{\lambda }^{\mathcal {G}_n'}\) which weakly converges to some \(p_\lambda ^\star \in L^2(\mathbb {T})\). Since \(C_{n'}\) is (weakly) closed for all \(n'\), \(p_\lambda ^\star \in \bigcap _{n'} C_{n'}=C\).

Moreover, by the characterization of the projection onto convex sets:

$$\begin{aligned} \forall z\in C\subset C_n', \ \left\langle \frac{y_0}{\lambda } - p_{\lambda }^{\mathcal {G}_n'},z\right\rangle - \left\langle \frac{y_0}{\lambda },p_{\lambda }^{\mathcal {G}_n'}\right\rangle +|| p_{\lambda }^{\mathcal {G}_n'} ||_2^2&\leqslant 0.\\ \text{ Passing } \text{ to } \text{ the } \text{ limit } n'\rightarrow +\infty , \ \left\langle \frac{y_0}{\lambda } - p_{\lambda }^\star ,z\right\rangle - \left\langle \frac{y_0}{\lambda },p_{\lambda }^\star \right\rangle + \liminf _{n'} || p_{\lambda }^{\mathcal {G}_n'} ||_2^2&\leqslant 0,\\ \left\langle \frac{y_0}{\lambda } - p_{\lambda }^\star ,z\right\rangle - \left\langle \frac{y_0}{\lambda },p_{\lambda }^\star \right\rangle + || p_{\lambda }^\star ||_2^2&\leqslant 0,\\ \left\langle \frac{y_0}{\lambda } - p_\lambda ^\star ,z - p_\lambda ^\star \right\rangle&\leqslant 0.\\ \end{aligned}$$

Thus, \(p_\lambda ^\star \) is the orthogonal projection of \(\frac{y_0}{\lambda }\) on \(C\): \(p_\lambda ^\star =P_{C}\left( \frac{y_0}{\lambda }\right) =p_\lambda \). Since this is true for any subsequence, the whole sequence \(p_{\lambda }^{\mathcal {G}_n}\) weakly converges to \(p_\lambda \).

Moreover, by lower semi-continuity and the inclusion \(C\subset C_n\) we have:

$$\begin{aligned} \left\| \frac{y_0}{\lambda }-p_\lambda \right\| _2&\leqslant \liminf _{n\rightarrow +\infty } \left\| \frac{y_0}{\lambda }-p_{\lambda }^{\mathcal {G}_n}\right\| _2\leqslant \limsup _{n\rightarrow +\infty }\left\| \frac{y_0}{\lambda }-p_{\lambda }^{\mathcal {G}_n}\right\| _2 \leqslant \left\| \frac{y_0}{\lambda }-p_{\lambda }\right\| _2, \end{aligned}$$

so that \(\frac{y_0}{\lambda }-p_{\lambda }^{\mathcal {G}_n}\) converges strongly to \(\frac{y_0}{\lambda }-p_{\lambda }\), hence the strong convergence of \(p_{\lambda }^{\mathcal {G}_n}\) to \(p_\lambda \).

The rest of the statement follows from Proposition 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duval, V., Peyré, G. Exact Support Recovery for Sparse Spikes Deconvolution. Found Comput Math 15, 1315–1355 (2015). https://doi.org/10.1007/s10208-014-9228-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-014-9228-6

Keywords

Mathematics Subject Classification

Navigation