Skip to main content
Log in

Federated transfer learning for attack detection for Internet of Medical Things

  • Special Issue Paper
  • Published:
International Journal of Information Security Aims and scope Submit manuscript

Abstract

In the healthcare sector, cyberattack detection systems are crucial for ensuring the privacy of patient data and building trust in the increasingly connected world of medical devices and patient monitoring systems. In light of the increasing prevalence of Internet of Medical Things (IoMT) technologies, it is essential to establish an efficient intrusion detection system (IDS). IDSs are crucial for protecting patient data and ensuring medical device reliability. Federated learning (FL) has emerged as an effective technique for enhancing distributed cyberattack detection systems. By distributing the learning process across multiple IoMT gateways, FL-based IDS offers several benefits, such as improved detection accuracy, reduced network latency, and minimized data leakage. However, as client data may not exhibit a uniform independent and identically distributed (IID) pattern, the heterogeneity of data distribution poses a significant challenge in implementing FL-based IDS for IoMT applications. In this paper, we propose a collaborative learning framework for IDS in IoMT applications. Specifically, we introduce a Federated Transfer Learning (FTL) IDS that enables clients to obtain their personalized FL model while benefiting from the knowledge of other clients. Our methodology enables clients to obtain a personalized model that addresses the challenges posed by the heterogeneity of data distribution. The experimental results show that the proposed model achieves superior detection performance with 95–99% accuracy. Moreover, our model exhibits strong performance in identifying zero-day attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used in this study are publicly available.

References

  1. Sarker, I.H., Khan, A.I., Abushark, Y.B., Alsolami, F.: Internet of Things (IoT) security intelligence: a comprehensive overview, machine learning solutions and research directions. Mobile Netw. Appl. 28(1), 296–312 (2023)

    Article  Google Scholar 

  2. Nguyen, D.C., Ding, M., Pathirana, P.N., Seneviratne, A., Li, J., Niyato, D., Vincent Poor, H.: Federated learning for industrial internet of things in future industries. IEEE Wirel. Commun. 28(6), 192–199 (2021)

    Article  Google Scholar 

  3. Dasaradharami Reddy, K, Gadekallu, T.R., et al.: A comprehensive survey on federated learning techniques for healthcare informatics. Comput. Intell. Neurosci. 2023 (2023)

  4. Alzahrani, F.A., Ahmad, M., Ansari, M.T.J.: Towards design and development of security assessment framework for internet of medical things. Appl. Sci. 12(16), 8148 (2022)

    Article  Google Scholar 

  5. Iqtidar Newaz, A.K.M., Sikder, A.K., Rahman, M.A., Selcuk Uluagac, A.: A survey on security and privacy issues in modern healthcare systems: attacks and defenses. ACM Trans. Comput. Healthc. 2(3), 1–44 (2021)

    Article  Google Scholar 

  6. IoT Tech News. Kaspersky: attacks on IoT devices double in a year. https://iottechnews.com/news/2021/sep/07/kaspersky-attacks-on-iot-devices-double-in-a-year/, Sep 2021. Accessed on Feb. 23, 2022.

  7. Martínez, A.L., Pérez, M.G., Ruiz-Martínez, A.: A comprehensive review of the state-of-the-art on security and privacy issues in healthcare. ACM Comput. Surv. 55(12), 1–38 (2023)

    Article  Google Scholar 

  8. Jayalaxmi, P.L.S., Kumar, G., Saha, R., Conti, M., Kim, T.H., Thomas, R.: Debot: a deep learning-based model for bot detection in industrial internet-of-things. Comput. Electr. Eng. 102, 108214 (2022)

    Article  Google Scholar 

  9. Borhani, M., Liyanage, M., Sodhro, A.H., Kumar, P., Jurcut, A.D., Gurtov, A.: Secure and resilient communications in the industrial internet. In: Rak, J., Hutchison, D. (eds.) Guide to Disaster-Resilient Communication Networks. Springer, Cham (2020)

    Google Scholar 

  10. Wang, X., Garg, S., Lin, H., Jia, H., Georges Kaddoum, M., Piran, J., Shamim Hossain, M.: Toward accurate anomaly detection in industrial internet of things using hierarchical federated learning. IEEE Internet Things J. 9(10), 7110–7119 (2021)

    Article  Google Scholar 

  11. Yunlong, Lu., Huang, X., Dai, Y., Maharjan, S., Zhang, Y.: Blockchain and federated learning for privacy-preserved data sharing in industrial IoT. IEEE Trans. Ind. Inf. 16(6), 4177–4186 (2020)

    Article  Google Scholar 

  12. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication- efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pages 1273–1282. PMLR, (2017)

  13. Boopalan, P., Ramu, S.P., Pham, Q.-V., Dev, K., Maddikunta, P.K.R., Gadekallu, T.R., Huynh-The, T., et al.: Fusion of federated learning and industrial internet of things: a survey. Comput. Netw. 212, 109048 (2022)

    Article  Google Scholar 

  14. Rieke, N., Hancox, J., Li, W., Milletari, F., Roth, H. R., Albarqouni, S., Bakas, S., Galtier, M.N., Landman, B.A., Maier-Hein, Klaus, et al.: The future of digital health with federated learning. NPJ Digit. Med. 3(1), 1–7 (2020)

    Article  Google Scholar 

  15. Venkatasubramanian, M., Lashkari, A.H., Hakak, S.: IoT malware analysis using federated learning: a comprehensive survey. IEEE Access, (2023)

  16. Xu, A., Li, W., Guo, P., Yang, D., Roth, H.R., Hatamizadeh, A., Zhao, C., Xu, D., Huang, H., Xu, Z.: Closing the generalization gap of cross-silo federated medical image segmentation. In:Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 20866–20875 (2022)

  17. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, methods, and future directions. IEEE Signal Process. Mag. 37(3), 50–60 (2020)

    Article  Google Scholar 

  18. Ahmad, A., Luo, W., Robles-Kelly, A.: Robust federated learning under statistical heterogeneity via hessian-weighted aggregation. Mach. Learn. 112(2), 633–654 (2023)

    Article  MathSciNet  Google Scholar 

  19. Agrawal, S., Sarkar, S., Aouedi, O., Yenduri, G., Piamrat, K., Alazab, M., Bhattacharya, S., Maddikunta, P.K.R., Gadekallu, T.R.: Federated learning for intrusion detection system: concepts, challenges and future directions. Comput. Commun. 195, 346 (2022)

    Article  Google Scholar 

  20. Tan, A.Z., Han, Y., Cui, L., Yang, Q.: Towards personalized federated learning. IEEE Trans. Neural Netw. Learn. Syst. 34, 1–17 (2022)

    MathSciNet  Google Scholar 

  21. Alsaedi, A., Moustafa, N., Tari, Z., Mahmood, A., Anwar, A.: Ton_IoT telemetry dataset: a new generation dataset of IoT and IIoT for data-driven intrusion detection systems. IEEE Access 8, 165130–165150 (2020)

    Article  Google Scholar 

  22. Xiao, L., Wan, X., Xiaozhen, Lu., Zhang, Y., Di, Wu.: IoT security techniques based on machine learning: How do IoT devices use AI to enhance security? IEEE Signal Process. Mag. 35(5), 41–49 (2018)

    Article  Google Scholar 

  23. Ahmad, R., Alsmadi, I., Alhamdani, W., Tawalbeh, L.: Zero-day attack detection: a systematic literature review. Artif. Intell. Rev. 56, 1–79 (2023)

    Article  Google Scholar 

  24. Nguyen, T.D., Marchal, S., Miettinen, M., Fereidooni, H., Asokan, N., Sadeghi, A.-R.: Dïot: a federated self-learning anomaly detection system for IoT. In: 2019 IEEE 39th International conference on distributed computing systems (ICDCS), pages 756–767. IEEE, (2019)

  25. Chen, Z., Lv, Na., Pengfei Liu, Yu., Fang, K.C., Pan, Wu.: Intrusion detection for wireless edge networks based on federated learning. IEEE Access 8, 217463–217472 (2020)

    Article  Google Scholar 

  26. Man, D., Zeng, F., Yang, W., Yu, M., Lv, J., Wang, Y.: Intelligent intrusion detection based on federated learning for edge-assisted internet of things. Secur. Commun. Netw. 2021 (2021)

  27. Campos, E.M., Saura, P.F., González-Vidal, A., Hernández-Ramos, J.L., Bernabe, J.B., Baldini, G., Skarmeta, A.: Evaluating federated learning for intrusion detection in internet of things: review and challenges. Comput. Netw. 203, 108661 (2021)

    Article  Google Scholar 

  28. Ruzafa-Alcazar, P., Fernandez-Saura, P., Marmol-Campos, E., Gonzalez-Vidal, A., Ramos, J.L.H., Bernal, J., Skarmeta, A.F.: Intrusion detection based on privacy-preserving federated learning for the industrial IoT. IEEE Trans. Industr. Inf. 19, 1145 (2021)

    Article  Google Scholar 

  29. Li, B., Yuhao, Wu., Song, J., Rongxing, Lu., Li, T., Zhao, L.: Deepfed: federated deep learning for intrusion detection in industrial cyber–physical systems. IEEE Trans. Industr. Inf. 17(8), 5615–5624 (2020)

    Article  Google Scholar 

  30. Mothukuri, V., Khare, P., Parizi, R.M., Pouriyeh, S., Dehghantanha, A., Srivastava, G.: Federated learning-based anomaly detection for IoT security attacks. IEEE Internet Things J. 9, 2545 (2021)

    Article  Google Scholar 

  31. Driss, M., Almomani, I., Ahmad, J., et al.: A federated learning framework for cyberattack detection in vehicular sensor networks. Complex Intell. Syst. 8, 4221 (2022)

    Article  Google Scholar 

  32. Attota, D.C., Mothukuri, V., Parizi, R.M., Pouriyeh, S.: An ensemble multi-view federated learning intrusion detection for IoT. IEEE Access 9, 117734–117745 (2021)

    Article  Google Scholar 

  33. Popoola, S.I., Ande, R., Adebisi, B., Gui, G., Hammoudeh, M., Jogunola, O.: Federated deep learning for zero-day botnet attack detection in IoT edge devices. IEEE Internet Things J. 9, 3930 (2021)

    Article  Google Scholar 

  34. Sarhan, M., Lo, W.W., Layeghy, S., Portmann, M.: Hbfl: a hierarchical blockchain-based federated learning framework for collaborative IoT intrusion detection. Comput. Electr. Eng. 103, 108379 (2022)

    Article  Google Scholar 

  35. Cui, L., Youyang, Qu., Xie, G., Zeng, D., Li, R., Shen, S., Shui, Yu.: Security and privacy- enhanced federated learning for anomaly detection in IoT infrastructures. IEEE Trans. Ind. Inf. 18(5), 3492–3500 (2022)

    Article  Google Scholar 

  36. Liu, H., Zhang, S., Zhang, P., Zhou, X., Shao, X., Geguang, Pu., Zhang, Y.: Blockchain and federated learning for collaborative intrusion detection in vehicular edge computing. IEEE Trans. Veh. Technol. 70(6), 6073–6084 (2021)

    Article  Google Scholar 

  37. Javed, M.U., Rehman, M., Javaid, N., Aldegheishem, A., Alrajeh, N., Tahir, M.: Blockchain-based secure data storage for distributed vehicular networks. Appl. Sci. 10(6), 2011 (2020)

    Article  Google Scholar 

  38. Youyang, Qu., Uddin, M.P., Gan, C., Xiang, Y., Gao, L., Yearwood, J.: Blockchain- enabled federated learning: a survey. ACM Comput. Surv. 55(4), 1–35 (2022)

    Google Scholar 

  39. Friha, O., Ferrag, M.A., Benbouzid, M., Berghout, T., Kantarci, B., Choo, K.-K.: 2df-ids: Decentralized and differentially private federated learning-based intrusion detection system for industrial IoT. Comput. Secur. 127, 103097 (2023)

    Article  Google Scholar 

  40. Houda, Z.A.E., Hafid, A.S., Khoukhi, L.: Mitfed: a privacy preserving collaborative network attack mitigation framework based on federated learning using SDN and blockchain. IEEE Transactions on Network Science and Engineering 10, 1985 (2023)

    Article  Google Scholar 

  41. Li, J., Lyu, L., Liu, X., Zhang, X., Lyu, X.: Fleam: a federated learning empowered architecture to mitigate DDoS in industrial IoT. IEEE Trans. Ind. Inf. 18(6), 4059–4068 (2021)

    Article  Google Scholar 

  42. Ferrag, M.A., Friha, O., Hamouda, D., Maglaras, L., Janicke, H.: Edge-iiotset: a new comprehensive realistic cyber security dataset of IoT and IIoT applications for centralized and federated learning. IEEE Access 10, 40281–40306 (2022)

    Article  Google Scholar 

  43. Friha, O., Ferrag, M.A., Shu, L., Maglaras, L., Choo, K.-K., Nafaa, M.: Felids: Federated learning-based intrusion detection system for agricultural internet of things. J. Parallel Distrib. Comput. 165, 17–31 (2022)

    Article  Google Scholar 

  44. Sarhan, M., Layeghy, S., Moustafa, N., Portmann, M.: Cyber threat intelligence sharing scheme based on federated learning for network intrusion detection. J. Netw. Syst. Manage. 31(1), 1–23 (2023)

    Article  Google Scholar 

  45. Rey, V., Sánchez, P.M.S., Celdrán, A.H., Bovet, G.: Federated learning for malware detection in iot devices. Comput. Netw. 204, 108693 (2022)

    Article  Google Scholar 

  46. Aouedi, O., Piamrat, K., Muller, G., Singh, K.: Federated semisupervised learning for attack detection in industrial internet of things. IEEE Trans. Industr. Inf. 19(1), 286–295 (2023)

    Article  Google Scholar 

  47. Khoa, T.V., Hoang, D.T., Trung, N.L., Nguyen, C.T., Quynh, T.T.T., Nguyen, D.N., Ha, N.V. Dutkiewicz, E.: Deep transfer learning: A novel collaborative learning model for cyberattack detection systems in IoT networks. IEEE Internet of Things J. (2022)

  48. Otoum, Y., Wan, Y., Nayak, A.: Federated transfer learning-based ids for the Internet of Medical Things (IoMT). In: 2021 IEEE Globecom Workshops (GC Wkshps), pages 1–6, (2021)

  49. Cheng, Y., Jianyuan, Lu., Niyato, D., Lyu, B., Kang, J., Zhu, S.: Federated transfer learning with client selection for intrusion detection in mobile edge computing. IEEE Commun. Lett. 26(3), 552–556 (2022)

    Article  Google Scholar 

  50. Zhang, J., Luo, C., Carpenter, M., Min, G.: Federated learning for distributed iiot intrusion detection using transfer approaches. IEEE Trans. Ind. Inf. 19, 1–11 (2022)

    Google Scholar 

  51. Rahman, S.A., Tout, H., Talhi, C., Mourad, A.: Internet of things intrusion detection: centralized, on-device, or federated learning? IEEE Network 34(6), 310–317 (2020)

    Article  Google Scholar 

  52. Khoa, T.V., Saputra, Y.M., Hoang, D.T., Trung, N.L., Nguyen, D., Ha, N.V. Dutkiewicz, E.: Collaborative learning model for cyberattack detection systems in IoT industry 4.0. In: 2020IEEE Wireless Communications and Networking Conference (WCNC), pp 1–6 (2020)

  53. Morris, T., Gao, W.: Industrial control system traffic data sets for intrusion detection research. In: International Conference on Critical Infrastructure Protection, pp 65–78. Springer (2014)

  54. Fan, Y., Li, Y., Zhan, M., Cui, H., Zhang, Y.: Iotdefender: a federated transfer learning intrusion detection framework for 5g iot. In: 2020 IEEE 14th International Conference on Big Data Science and Engineering (BigDataSE), pp 88–95, (2020)

  55. Huong, T.T., Bac, T.P., Long, D.M., Thang, B.D., Binh, N.T., Luong, T.D., Phuc, T.K.: Lockedge: low-complexity cyberattack detection in IoT edge computing. IEEE Access 9, 29696–29710 (2021)

    Article  Google Scholar 

  56. Qin, Q., Poularakis, K., Leung, K.K., Tassiulas, L.: Line-speed and scalable intrusion detection at the network edge via federated learning. In: 2020 IFIP Networking Conference (Networking), pp 352–360. IEEE (2020)

  57. Peter Kairouz, H., McMahan, B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A.N., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., et al.: Advances and open problems in federated learning. Found. Trends Mach. Learn. 14(1–2), 1–210 (2021)

    Article  Google Scholar 

  58. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with non-iid data. arXiv preprint arXiv:1806.00582 (2018)

  59. Pang, J., Huang, Y., Xie, Z., Han, Q., Cai, Z.: Realizing the heterogeneity: a self-organized federated learning framework for IoT. IEEE Internet Things J. 8(5), 3088–3098 (2020)

    Article  Google Scholar 

  60. Sarhan, M., Layeghy, S., Moustafa, N., Portmann, M.: Netflow datasets for machine learning- based network intrusion detection systems. In: Big Data Technologies and Applications, pp 117–135. Springer (2020)

  61. Lashkari, A.H., Draper-Gil, G., Mamun, M.S.I., Ghorbani, A.A., et al.: Characterization of tor traffic using time based features. In: ICISSp, pp 253–262 (2017)

  62. Moustafa, N.: New generations of internet of things datasets for cybersecurity applications based machine learning: Ton_iot datasets. In: Proceedings of the eResearch Australasia Conference, Brisbane, Australia, pp 21–25, (2019)

  63. Yuan, H., Morningstar, W., Ning, L., Singhal, K.: What do we mean by generalization in federated learning? arXiv preprint arXiv:2110.14216, (2021)

  64. Sarhan, M., Layeghy, S., Portmann, M.: Evaluating standard feature sets towards increased generalisability and explainability of ml-based network intrusion detection. Big Data Res. 30, 100359 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Alharbi was responsible for Conceptualization, Methodology, Writing—original draft preparation, final research review, and editing. Software, Data Curing, and results analysis.

Corresponding author

Correspondence to Afnan A. Alharbi.

Ethics declarations

Conflict of interest

The authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharbi, A.A. Federated transfer learning for attack detection for Internet of Medical Things. Int. J. Inf. Secur. 23, 81–100 (2024). https://doi.org/10.1007/s10207-023-00805-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10207-023-00805-9

Keywords

Navigation