Skip to main content
Log in

Radio frequency fingerprinting techniques for device identification: a survey

  • Regular Contribution
  • Published:
International Journal of Information Security Aims and scope Submit manuscript

Abstract

The Internet of Things (IoT) paradigm and the advanced wireless technologies of 5G and beyond are expected to enable diverse applications such as autonomous driving, industrial automation, and smart cities. These applications bring together a vast and diverse IoT device population that occupy radio frequency spectrum. Such a large number of wireless devices expose previously unheard-of threat surfaces in addition to the bandwidth shortage and throughput issues. Device identification is crucial in such scenarios not only to authenticate and authorize nodes, but also to employ different network services. One of the promising solutions for device identification is the use of radio frequency (RF) fingerprinting. Recently, wireless device identification using RF fingerprinting along with machine learning and deep learning technologies showed outstanding results in the recent contemporary domains. This paper presents a systematic literature review of RF fingerprinting identification of wireless devices by presenting the results as a graphical and tabular representation of statistical data obtained. Only experimental research papers were considered of over 130 journals and international conference papers that have been classified and evaluated from the year 2010 till date. This survey focuses on exploring the commonly used RF fingerprinting approaches, feature extraction and filtration techniques, and classification algorithm used in the device identification. Finally, open issues and challenges along with future directions have presented which were discovered during the process of analyzing the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Abomhara M., Koien G. M.: Security and privacy in the internet of things: current status and open issues. in 2014 international conference on privacy and security in mobile systems (PRISMS), IEEE, pp. 1–8, (2014), doi: https://doi.org/10.1109/PRISMS.2014.6970594.

  2. Leo M., Battisti F., Carli M., Neri A.: A federated architecture approach for Internet of Things security. in 2014 Euro Med Telco Conference—From Network Infrastructures to Network Fabric: Revolution at the Edges, EMTC 2014, pp. 1–5, (2014), https://doi.org/10.1109/EMTC.2014.6996632

  3. Lewis, J.: Economic Impact of Cybercrime—No Slowing Down Report”, McAfee: Santa Clara. CA, USA (2018)

    Google Scholar 

  4. “Official Annual Cybercrime Report Announced By Cybersecurity Ventures.” [Online]. Available: https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/

  5. Mahmoud R., Yousuf T., Aloul F., Zualkernan I.: Internet of things (IoT) security: current status, challenges and prospective measures. in 10th International Conference for Internet Technology and Secured Transactions, ICITST, pp. 336–341, (2016), doi: https://doi.org/10.1109/ICITST.2015.7412116.

  6. Douceur J. R.: The sybil attack. in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer Verlag, pp. 251–260, (2002). doi: https://doi.org/10.1007/3-540-45748-8_24.

  7. Abbas, S.: An efficient sybil attack detection for internet of things. Adv. Intell. Syst. Comp. 931, 339–349 (2019). https://doi.org/10.1007/978-3-030-16184-2_33

    Article  Google Scholar 

  8. Abbas S., Merabti M., Llewellyn-Jones D.: Signal strength based sybil attack detection in wireless ad hoc networks. in Proceedings International Conference on Developments in eSystems Engineering, DeSE, (2009) doi: https://doi.org/10.1109/DeSE.2009.27.

  9. Soltanieh, N., Norouzi, Y., Yang, Y., Karmakar, N.C.: A review of radio frequency fingerprinting techniques. IEEE J. Radio Freq. Ident 4(3), 222–233 (2020). https://doi.org/10.1109/jrfid.2020.2968369

    Article  Google Scholar 

  10. Bhaskar N.: A survey of techniques in passive identification of wireless personal devices and the implications on user tracking. Tecnical Report, Department of Computer Science, University of California San Diego, (2019).

  11. Xu, Q., Zheng, R., Saad, W., Han, Z.: Device fingerprinting in wireless networks: challenges and opportunities. IEEE Commun. Surv. Tutor. 18(1), 94–104 (2016). https://doi.org/10.1109/COMST.2015.2476338

    Article  Google Scholar 

  12. Chen Y., Kleisouris K., Li X., Trappe W., Martin R. P.: The robustness of localization algorithms to signal strength attacks: a comparative study. in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer, 2006, pp. 546–563. doi: https://doi.org/10.1007/11776178_33.

  13. Danev, B., Zanetti, D., Capkun, S.: On physical-layer identification of wireless devices. ACM Comput. Surv. 45(1), 1–29 (2012). https://doi.org/10.1145/2379776.2379782

    Article  Google Scholar 

  14. Rehman, S.U., Alam, S., Ardekani, I.T.: An overview of radio frequency fingerprinting for Low-End devices. Int. J. Mobile Comput. Multimed. Commun. 6(3), 1–21 (2014). https://doi.org/10.4018/IJMCMC.2014070101

    Article  Google Scholar 

  15. Baldini, G., Steri, G.: A survey of techniques for the identification of mobile phones using the physical fingerprints of the built-in components. IEEE Commun. Surv. Tutor. 19(3), 1761–1789 (2017). https://doi.org/10.1109/COMST.2017.2694487

    Article  Google Scholar 

  16. Xie, N., Li, Z., Tan, H.: A survey of physical-layer authentication in wireless communications. IEEE Commun. Surv. Tutor. 23(1), 282–310 (2021). https://doi.org/10.1109/COMST.2020.3042188

    Article  Google Scholar 

  17. Bai, L., Zhu, L., Liu, J., Choi, J., Zhang, W.: Physical layer authentication in wireless communication networks: a survey. J. Commun. Inf. Netw. 5(3), 237–264 (2020)

    Article  Google Scholar 

  18. Jagannath, A., Jagannath, J., Kumar, P.S.P.V.: A comprehensive survey on radio frequency (rf) fingerprinting: traditional approaches, deep learning, and open challenges. Comput. Netw. 219, 109455 (2022)

    Article  Google Scholar 

  19. Zhang, J., Shen, G., Saad, W., Chowdhury, K.: Radio frequency fingerprint identification for device authentication in the internet of things. IEEE Commun. Mag. (2023). https://doi.org/10.1109/MCOM.003.2200974

    Article  Google Scholar 

  20. Kumar, V., Paul, K.: Device fingerprinting for cyber-physical systems: a survey. ACM Comput. Surv. 55(14s), 1–41 (2023)

    Article  Google Scholar 

  21. Chowdhury, R.R., Abas, P.E.: A survey on device fingerprinting approach for resource-constraint IoT devices: comparative study and research challenges. Internet of Things 20, 100632 (2022). https://doi.org/10.1016/j.iot.2022.100632

    Article  Google Scholar 

  22. Shan, D., Zeng, K., Xiang, W., Richardson, P., Dong, Y.: PHY-CRAM: Physical layer challenge-response authentication mechanism for wireless networks. IEEE J. Sel. Areas Commun. 31(9), 1817–1827 (2013)

    Article  Google Scholar 

  23. Liu, J., Yu, F.R., Lung, C.-H., Tang, H.: Optimal combined intrusion detection and biometric-based continuous authentication in high security mobile ad hoc networks. IEEE Trans. Wirel. Commun. 8(2), 806–815 (2009)

    Article  Google Scholar 

  24. Ibrahim, M., Youssef, M.: CellSense: an accurate energy-efficient GSM positioning system. IEEE Trans. Veh. Technol. 61(1), 286–296 (2011)

    Article  Google Scholar 

  25. Hunag J.-S., Harwahyu R., Cheng R.-G.: Study of low cost mobile phone tracking system. in 2015 International Symposium on Next-Generation Electronics (ISNE), IEEE, pp. 1–4, (2015)

  26. Porambage, P., Gür, G., Osorio, D.P.M., Liyanage, M., Gurtov, A., Ylianttila, M.: The roadmap to 6G security and privacy. IEEE Open J. Commun. Soc. 2, 1094–1122 (2021)

    Article  Google Scholar 

  27. Kishk, M., Bader, A., Alouini, M.-S.: Aerial base station deployment in 6G cellular networks using tethered drones: the mobility and endurance tradeoff. IEEE Veh. Technol. Mag. 15(4), 103–111 (2020)

    Article  Google Scholar 

  28. Keele, S.: Guidelines for performing systematic literature reviews in software engineering. Technical Report 2016, EBSE: Durham, UK, (2007)

  29. Uzundurukan, E., Dalveren, Y., Kara, A.: A database for the radio frequency fingerprinting of bluetooth devices. Data 5(2), 1–11 (2020). https://doi.org/10.3390/data5020055

    Article  Google Scholar 

  30. Jian, T., et al.: Deep learning for RF fingerprinting: a massive experimental study. IEEE Internet Things Magaz. 3(1), 50–57 (2020). https://doi.org/10.1109/iotm.0001.1900065

    Article  Google Scholar 

  31. Ali, A.M., Uzundurukan, E., Kara, A.: Assessment of features and classifiers for bluetooth RF fingerprinting. IEEE Access 7, 50524–50535 (2019). https://doi.org/10.1109/ACCESS.2019.2911452

    Article  Google Scholar 

  32. Ur Rehman S., Sowerby K., Coghill C.: RF fingerprint extraction from the energy envelope of an instantaneous transient signal. in Australian Communications Theory Workshop, AusCTW’12, IEEE, 2012, pp. 90–95. doi: https://doi.org/10.1109/AusCTW.2012.6164912.

  33. Tu, Y., Zhang, Z., Li, Y., Wang, C., Xiao, Y.: Research on the internet of things device recognition based on RF-fingerprinting. IEEE Access 7, 37426–37431 (2019). https://doi.org/10.1109/ACCESS.2019.2904657

    Article  Google Scholar 

  34. Wang, S., Peng, L., Fu, H., Hu, A. and Zhou, X.: A convolutional neural network-based rf fingerprinting identification scheme for mobile phones. in IEEE INFOCOM - IEEE Conference on Computer Communications Workshops, IEEE, pp. 115–120, (2020), https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9163058.

  35. Xing, Y., Hu, A., Zhang, J., Peng, L., Li, G.: On radio frequency fingerprint identification for DSSS systems in low SNR scenarios. IEEE Commun. Lett. 22(11), 2326–2329 (2018). https://doi.org/10.1109/LCOMM.2018.2871454

    Article  Google Scholar 

  36. Alpergun O., Tascioglu S., Kose M., Performance analysis of transmitter identification based on I/Q imbalance estimation. in Proceedings of the 11th International Conference on Electronics, Computers and Artificial Intelligence, ECAI 2019, 1, pp 2–5, (2019), https://doi.org/10.1109/ECAI46879.2019.9042150.

  37. Zhuo, F., Huang, Y., Chen, J.: Radio frequency fingerprint extraction of radio emitter based on I/Q imbalance. Proc. Comput. Sci. 107, 472–477 (2017). https://doi.org/10.1016/j.procs.2017.03.092

    Article  Google Scholar 

  38. Fodor I.K.: A survey of dimension reduction techniques. Center for Applied Scientific Computing, Lawrence Livermore National Laboratory 9 pp. 1–18 https://doi.org/10.2172/15002155

  39. Dubendorfer C., Ramsey B., Temple M.: ZigBee device verification for securing industrial control and building automation systems. in IFIP Advances in Information and Communication Technology, J. Butts, S. Shenoi, J. Butts, and S. Shenoi, Eds., Berlin, Heidelberg, pp. 47–62 (2013) https://doi.org/10.1007/978-3-642-45330-4_4.

  40. Williams M. D., Temple M. A., Reising D. R.: Augmenting bit-level network security using physical layer RF-DNA fingerprinting. in GLOBECOM - IEEE Global Telecommunications Conference, IEEE, (2010) pp. 1–6. doi: https://doi.org/10.1109/GLOCOM.2010.5683789.

  41. Tascioglu S., Kose M., Telatar Z.: Effect of sampling rate on transient based RF fingerprinting. in 10th International Conference on Electrical and Electronics Engineering, pp. 1156–1160, (2018)

  42. Chen, X., Hao, X.: Feature reduction method for cognition and classification of IoT devices based on artificial intelligence. IEEE Access 7, 103291–103298 (2019). https://doi.org/10.1109/ACCESS.2019.2929311

    Article  Google Scholar 

  43. Baldini G., Giuliani R., Steri G., Sanchez I., Gentile C.: The application of the Symbolic Aggregate Approximation algorithm (SAX) to radio frequency fingerprinting of IoT devices. in IEEE Symposium on Communications and Vehicular Technology (SCVT), IEEE, pp. 1–6. (2017), https://doi.org/10.1109/SCVT.2017.8240312.

  44. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014). https://doi.org/10.1016/j.compeleceng.2013.11.024

    Article  Google Scholar 

  45. Bihl, T.J., Bauer, K.W., Temple, M.A.: Feature selection for RF fingerprinting with multiple discriminant analysis and using zigbee device emissions. IEEE Trans. Inf. Forensics Secur. 11(8), 1862–1874 (2016). https://doi.org/10.1109/TIFS.2016.2561902

    Article  Google Scholar 

  46. Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.: Neighbourhood components analysis. Adv. Neural Inf. Process Syst. (NIPS) 17, 513–520 (2004)

    Google Scholar 

  47. Ezuma, M., Erden, F., Anjinappa, C.K., Ozdemir, O., Guvenc, I.: Detection and classification of UAVs using RF fingerprints in the presence of Wi-Fi and bluetooth interference. IEEE Open J. Commun. Soc. 1, 60–76 (2019). https://doi.org/10.1109/ojcoms.2019.2955889

    Article  Google Scholar 

  48. Wang, Y., Gui, G., Gacanin, H., Ohtsuki, T., Dobre, O.A., Poor, H.V.: An efficient specific emitter identification method based on complex-valued neural networks and network compression. IEEE J. Sel. Areas Commun. 39(8), 2305–2317 (2021). https://doi.org/10.1109/JSAC.2021.3087243

    Article  Google Scholar 

  49. Yang, Y., Hu, A., Yu, J., Li, G., Zhang, Z.: Radio frequency fingerprint identification based on stream differential constellation trace figures. Phys. Commun. 49, 101458 (2021). https://doi.org/10.1016/j.phycom.2021.101458

    Article  Google Scholar 

  50. Sun, L., Wang, X., Huang, Z.: Unintentional modulation evaluation in time domain and frequency domain. Chin. J. Aeronaut. (2021). https://doi.org/10.1016/j.cja.2021.05.013

    Article  Google Scholar 

  51. Aghnaiya, A., Dalveren, Y., Kara, A.: On the performance of variational mode decomposition-based radio frequency fingerprinting of bluetooth devices. Sensors 20(6), 1706 (2020). https://doi.org/10.3390/s20061704

    Article  Google Scholar 

  52. Hsu, C.-W., Lin, C.-J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002). https://doi.org/10.1109/72.991427

    Article  Google Scholar 

  53. Noble, W.S.: What is a support vector machine? Nat. Biotechnol. 24(12), 1565–1567 (2006). https://doi.org/10.1038/nbt1206-1565

    Article  Google Scholar 

  54. Hopfield, J.J.: Artificial neural networks. IEEE Circuits Devices Mag. 4(5), 3–10 (1988). https://doi.org/10.1109/101.8118

    Article  Google Scholar 

  55. Shanmuganathan S. (2016) Artificial neural network modelling: an introduction, vol. 628. 2016. doi: https://doi.org/10.1007/978-3-319-28495-8_1

  56. Wang, J., Zhuang, L., Cheng, W., Xu, C., Wu, X., Zhang, Z.: Analysis of classification methods based on radio frequency fingerprint for zigbee devices. Adv. Intell. Syst. Comput. 924, 121–132 (2019). https://doi.org/10.1007/978-981-13-6861-5_11

    Article  Google Scholar 

  57. Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understanding deep neural networks. Digital Signal Process. Rev. J. 73, 1–15 (2018). https://doi.org/10.1016/j.dsp.2017.10.011

    Article  MathSciNet  Google Scholar 

  58. Wang, X., Zhao, Y., Pourpanah, F.: Recent advances in deep learning. Int. J. Mach. Learn. Cybern. 11(4), 747–750 (2020). https://doi.org/10.1007/s13042-020-01096-5

    Article  Google Scholar 

  59. Qing, G., Wang, H., Zhang, T.: Radio frequency fingerprinting identification for Zigbee via lightweight CNN. Phys. Commun. 44, 101250 (2021). https://doi.org/10.1016/j.phycom.2020.101250

    Article  Google Scholar 

  60. Wang, X., Wang, X., Mao, S.: RF sensing in the internet of things: a general deep learning framework. IEEE Commun. Mag. 56(9), 62–67 (2018). https://doi.org/10.1109/MCOM.2018.1701277

    Article  Google Scholar 

  61. Wang H., Raj B.: On the origin of deep learning. ArXiv, pp. 1–72, Feb. (2017)

  62. LeCun, Y., Bengio, Y., Courville, A.: Deep learning. Nature 29(7553), 1–73 (2016)

    Google Scholar 

  63. Roy, D., Mukherjee, T., Chatterjee, M., Blasch, E., Pasiliao, E.: RFAL: adversarial learning for RF transmitter identification and classification. IEEE Trans. Cogn. Commun. Netw. 6(2), 783–801 (2020). https://doi.org/10.1109/TCCN.2019.2948919

    Article  Google Scholar 

  64. Yuan, Y., Huang, Z., Wu, H., Wang, X.: Specific emitter identification based on Hilbert-Huang transform-based time-frequency-energy distribution features. IET Commun. 8(13), 2404–2412 (2014). https://doi.org/10.1049/iet-com.2013.0865

    Article  Google Scholar 

  65. Ohtsuji T., Takeuchi T., Soma T., Kitsunezuka M.: Noise-Tolerant, Deep-learning-based radio identification with logarithmic power spectrum. IEEE International Conference on Communications, vol. 2019, pp. 1–6, 2019, (2019) https://doi.org/10.1109/ICC.2019.8761929.

  66. Uzundurukan, E., Ali, A.M., Dalveren, Y., Kara, A.: Performance analysis of modular RF front end for RF fingerprinting of bluetooth devices. Wirel. Pers. Commun. 112(4), 2519–2531 (2020). https://doi.org/10.1007/s11277-020-07162-z

    Article  Google Scholar 

  67. Tian, Q., Lin, Y., Guo, X., Wang, J., Alfarraj, O., Tolba, A.: An identity authentication method of a miot device based on radio frequency (RF) fingerprint technology. Sensors 20(4), 1–18 (2020). https://doi.org/10.3390/s20041213

    Article  Google Scholar 

  68. Kelkar A., Dick C.: VIDIA Aerial GPU Hosted AI-on-5G. in Proceedings - IEEE 4th 5G World Forum, 5GWF, IEEE, 2021, pp. 64–69. doi: https://doi.org/10.1109/5GWF52925.2021.00019.

  69. Madry A., Makelov A., Schmidt L., Tsipras D., Vladu A.: Towards deep learning models resistant to adversarial attacks. 6th International Conference on Learning Representations, ICLR 2018–Conference Track Proceedings, (2018)

  70. Andriushchenko M., Croce F., Flammarion N., Hein M.: Square attack: a query-efficient black-box adversarial attack via random search. in European Conference on Computer Vision, Springer, pp. 484–501, (2020)

  71. Carlini N., Wagner D.: Towards evaluating the robustness of neural networks. in ieee symposium on security and privacy (sp), IEEE, pp 39–57, (2017)

  72. Wang, Y., et al.: Adversarial attacks and defenses in machine learning-powered networks: a contemporary survey. IEEE Commun. Surv. Tutor. (2023). https://doi.org/10.1109/COMST.2023.3319492

    Article  Google Scholar 

  73. Karunaratne S., Krijestorac E., Cabric D.: Penetrating RF fingerprinting-based authentication with a generative adversarial attack. in ICC IEEE International Conference on Communications, IEEE, 2021, pp. 1–6, (2021)

  74. Kim, B., Sagduyu, Y.E., Davaslioglu, K., Erpek, T., Ulukus, S.: Channel-aware adversarial attacks against deep learning-based wireless signal classifiers. IEEE Trans. Wirel. Commun. 21(6), 3868–3880 (2021)

    Article  Google Scholar 

  75. Ye, Y., Chen, Y., Liu, M.: Multiuser adversarial attack on deep learning for OFDM detection. IEEE Wireless Communications Letters 11(12), 2527–2531 (2022)

    Article  Google Scholar 

  76. Shi, Y., Davaslioglu, K., Sagduyu, Y.E.: Generative adversarial network in the air: deep adversarial learning for wireless signal spoofing. IEEE Trans. Cogn. Commun. Netw. 7(1), 294–303 (2020)

    Article  Google Scholar 

  77. Bahramali A., Nasr M., Houmansadr A., Goeckel D., Towsley D.: Robust adversarial attacks against DNN-based wireless communication systems. in Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, 2021, pp. 126–140

  78. de Araujo-Filho, P.F., Kaddoum, G., Naili, M., Fapi, E.T., Zhu, Z.: Multi-objective GAN-based adversarial attack technique for modulation classifiers. IEEE Commun. Lett. 26(7), 1583–1587 (2022)

    Article  Google Scholar 

  79. Durbha K. S., Amuru S.: AutoML models for wireless signals classification and their effectiveness against adversarial attacks,” in 14th International Conference on COMmunication Systems & NETworkS (COMSNETS), IEEE, 2022, pp. 265–269. (2022)

  80. Kim B., Sagduyu Y. E., Erpek , K. Davaslioglu T., Ulukus S.: Channel effects on surrogate models of adversarial attacks against wireless signal classifiers. in ICC 2021-IEEE International Conference on Communications, IEEE, 2021, pp. 1–6.

  81. Xiao, F., Huang, Y., Zuo, Y., Kuang, W., Wang, W.: Over-the-Air adversarial attacks on deep learning Wi-Fi fingerprinting. IEEE Internet Things J. 10(11), 9823–9835 (2023). https://doi.org/10.1109/JIOT.2023.3236314

    Article  Google Scholar 

  82. Xu, D., Yang, H., Gu, C., Chen, Z., Xuan, Q., Yang, X.: Adversarial examples detection of radio signals based on multifeature fusion. IEEE Trans. Circuits Syst. II Express Briefs 68(12), 3607–3611 (2021)

    Google Scholar 

  83. Sahay, R., Brinton, C.G., Love, D.J.: A deep ensemble-based wireless receiver architecture for mitigating adversarial attacks in automatic modulation classification. IEEE Trans Cogn Commun Netw 8(1), 71–85 (2021)

    Article  Google Scholar 

  84. Zhang, L., Lambotharan, S., Zheng, G., Liao, G., Assadhan, B., Roli, F.: Attention-based adversarial robust distillation in radio signal classifications for low-power IoT devices. IEEE Internet Things J. 10(3), 2646–2657 (2023). https://doi.org/10.1109/JIOT.2022.3215188

    Article  Google Scholar 

  85. Zhang, L., Lambotharan, S., Zheng, G., Liao, G., Demontis, A., Roli, F.: A hybrid training-time and run-time defense against adversarial attacks in modulation classification. IEEE Wireless Commun. Lett. 11(6), 1161–1165 (2022)

    Article  Google Scholar 

  86. Wang, Z., Liu, W., Wang, H.-M.: Gan against adversarial attacks in radio signal classification. IEEE Commun. Lett. 26(12), 2851–2854 (2022)

    Article  Google Scholar 

  87. G. Baldini and R. Giuliani, “An assessment of the impact of wireless interferences on IoT emitter identification using Time Frequency representations and CNN,” Global IoT Summit, GIoTS 2019 - Proceedings, pp. 1–6, 2019, doi: https://doi.org/10.1109/GIOTS.2019.8766385.

  88. Gul, O.M., Kulhandjian, M., Kantarci, B., Touazi, A., Ellement, C., D’amours, C.: Secure Industrial IoT Systems via RF Fingerprinting Under Impaired Channels With Interference and Noise. IEEE Access 11, 26289–26307 (2023)

    Article  Google Scholar 

  89. F. Lemic, A. Behboodi, V. Handziski, and A. Wolisz, “Increasing interference robustness of wifi fingerprinting by leveraging spectrum information,” in 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, IEEE, 2015, pp. 1200–1208.

  90. Li, Y., Chen, L., Chen, J., Xie, F., Chen, S., Wen, H.: A low complexity feature extraction for the rf fingerprinting process. IEEE Conference on Communications and Network Security, CNS 2018, 1–2 (2018). https://doi.org/10.1109/CNS.2018.8433156

    Article  Google Scholar 

  91. L. Peng, A. Hu, Y. Jiang, Y. Yan, and C. Zhu, “A differential constellation trace figure based device identification method for ZigBee nodes,” 8th International Conference on Wireless Communications and Signal Processing, WCSP 2016, no. 61571110, 2016, doi: https://doi.org/10.1109/WCSP.2016.7752534.

  92. J. Yu, A. Hu, G. Li, and L. Peng, “A Multi-Sampling Convolutional Neural Network-Based RF Fingerprinting Approach for Low-Power Devices,” INFOCOM 2019 - IEEE Conference on Computer Communications Workshops, vol. 2019-Janua, 2019, doi: https://doi.org/10.1109/INFOCOMWKSHPS47286.2019.9093777.

  93. L. Zong, C. Xu, and H. Yuan, “A RF Fingerprint Recognition Method Based on Deeply Convolutional Neural Network,” in 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), IEEE, Jun. 2020, pp. 1778–1781. doi: https://doi.org/10.1109/ITOEC49072.2020.9141877.

  94. Zhao, C., Huang, M., Huang, L., Du, X., Guizani, M.: A robust authentication scheme based on physical-layer phase noise fingerprint for emerging wireless networks. Comput. Netw. 128, 164–171 (2017). https://doi.org/10.1016/j.comnet.2017.05.028

    Article  Google Scholar 

  95. F. Zhao and Y. Jin, “An optimized radio frequency fingerprint extraction method applied to low-end receivers,” IEEE 11th International Conference on Communication Software and Networks, ICCSN 2019, pp. 753–757, 2019, doi: https://doi.org/10.1109/ICCSN.2019.8905292.

  96. C. K. Dubendorfer, B. W. Ramsey, and M. A. Temple, “An RF-DNA verification process for ZigBee networks,” in Proceedings - IEEE Military Communications Conference MILCOM, 2012, pp. 1–6. doi: https://doi.org/10.1109/MILCOM.2012.6415804.

  97. Rehman, S.U., Sowerby, K.W., Coghill, C.: Analysis of impersonation attacks on systems using RF fingerprinting and low-end receivers. J. Comput. Syst. Sci. 80(3), 591–601 (2014). https://doi.org/10.1016/j.jcss.2013.06.013

    Article  Google Scholar 

  98. K. S. Kuciapinski, M. A. Temple, and R. W. Klein, “Anova-based RF DNA analysis: Identifying significant parameters for device classification,” in WINSYS 2010 - Proceedings of the International Conference on Wireless Information Networks and Systems, 2010, pp. 47–52.

  99. Reising, D.R., Temple, M.A., Jackson, J.A.: Authorized and Rogue Device Discrimination Using Dimensionally Reduced RF-DNA Fingerprints. IEEE Trans. Inf. Forensics Secur. 10(6), 1180–1192 (2015). https://doi.org/10.1109/TIFS.2015.2400426

    Article  Google Scholar 

  100. C. Zhao, C. Chen, Z. Cai, M. Shi, X. Du, and M. Guizani, “Classification of Small UAVs Based on Auxiliary Classifier Wasserstein GANs,” IEEE Global Communications Conference, GLOBECOM 2018 - Proceedings, pp. 206–212, 2018, doi: https://doi.org/10.1109/GLOCOM.2018.8647973.

  101. L. Smith et al., “Classifying WiFi ‘physical fingerprints’ using complex deep learning,” in Automatic Target Recognition XXX, T. L. Overman, R. I. Hammoud, and A. Mahalanobis, Eds., SPIE, Apr. 2020, p. 22. doi: https://doi.org/10.1117/12.2557933.

  102. Zhao, C., Wu, X., Huang, L., Yao, Y., Chang, Y.C.: Compressed sensing based fingerprint identification for wireless transmitters. Sci. World J. 2014, 473178 (2014). https://doi.org/10.1155/2014/473178

    Article  Google Scholar 

  103. Bihl, T.J., Paciencia, T.J., Bauer, K.W., Temple, M.A.: Cyber-physical security with RF fingerprint classification through distance measure extensions of generalized relevance learning vector quantization. Secur Commun. Netw. 1, 2020 (2020). https://doi.org/10.1155/2020/3909763

    Article  Google Scholar 

  104. Xie, F., et al.: Data augmentation for radio frequency fingerprinting via pseudo-random integration. IEEE Trans Emerg Top Comput Intell 4(3), 276–286 (2020). https://doi.org/10.1109/TETCI.2019.2907740

    Article  Google Scholar 

  105. Peng, L., Zhang, J., Liu, M., Hu, A.: Deep learning based RF fingerprint identification using differential constellation trace figure. IEEE Trans. Veh. Technol. 69(1), 1091–1095 (2020). https://doi.org/10.1109/TVT.2019.2950670

    Article  Google Scholar 

  106. Hanna S.S., Cabric D.: Deep learning based transmitter identification using power amplifier nonlinearity. ArXiv, pp. 674–680, (2018).

  107. Merchant, K., Revay, S., Stantchev, G., Nousain, B.: Deep learning for RF device fingerprinting in cognitive communication networks. IEEE J Sel Top Signal Process 12(1), 160–167 (2018). https://doi.org/10.1109/JSTSP.2018.2796446

    Article  Google Scholar 

  108. Peng, L., Hu, A., Zhang, J., Jiang, Y., Yu, J., Yan, Y.: Design of a hybrid RF fingerprint extraction and device classification scheme. IEEE Internet Things J. 6(1), 349–360 (2019). https://doi.org/10.1109/JIOT.2018.2838071

    Article  Google Scholar 

  109. Zhou, X., Hu, A., Li, G., Peng, L., Xing, Y., Yu, J.: Design of a robust RF fingerprint generation and classification scheme for practical device identification. IEEE Conf Commun Netw Sec CNS 2019, 196–204 (2019). https://doi.org/10.1109/CNS.2019.8802783

    Article  Google Scholar 

  110. Lukacs M., Collins P., Temple M.: Device identification using active noise interrogation and RF-DNA ‘Fingerprinting’ for non-destructive amplifier acceptance testing. in 2016 IEEE 17th Annual Wireless and Microwave Technology Conference (WAMICON), pp. 1–6, (2016) https://doi.org/10.1109/WAMICON.2016.7483856.

  111. Robinson J., Kuzdeba S., Stankowicz J., Carmack J.M.: Dilated causal convolutional model for RF fingerprinting. 10th Annual Computing and Communication Workshop and Conference, CCWC 2020, pp. 157–162, (2020), https://doi.org/10.1109/CCWC47524.2020.9031257

  112. Merchant K., Nousain B.: Enhanced RF Fingerprinting for IoT Devices with Recurrent Neural Networks. Proceedings - IEEE Military Communications Conference MILCOM, vol. 2019-Novem, pp. 590–597, (2019), doi: https://doi.org/10.1109/MILCOM47813.2019.9021080.

  113. Zhuang Z.: et al. FBSleuth: Fake base station forensics via radio frequency fingerprinting. in ASIACCS 2018 - Proceedings of the 2018 ACM Asia Conference on Computer and Communications Security, pp. 261–272, (2018), https://doi.org/10.1145/3196494.3196521.

  114. Scanlon, P., Kennedy, I.O., Liu, Y.: Feature extraction approaches to RF fingerprinting for device identification in femtocells. Bell Labs Tech J 15(3), 141–151 (2010). https://doi.org/10.1002/bltj.20462

    Article  Google Scholar 

  115. Gritsenko A., Wang Z., Jian J. Dy, K. Chowdhury, Ioannidis S.: Finding a ‘New’ Needle in the Haystack: Unseen Radio Detection in Large Populations Using Deep Learning. IEEE International Symposium on Dynamic Spectrum Access Networks, DySPAN 2019, pp. 1–10, (2019), doi: https://doi.org/10.1109/DySPAN.2019.8935862

  116. Reising D.R., Temple M.A., Oxley M.E.: Gabor-based RF-DNA fingerprinting for classifying 802.16e WiMAX mobile subscribers. in 2012 International Conference on Computing, Networking and Communications (ICNC), (2012), pp. 7–13. https://doi.org/10.1109/ICCNC.2012.6167534.

  117. Wang, X., Zhang, Y., Zhang, H., Wei, X., Wang, G.: Identification and authentication for wireless transmission security based on RF-DNA fingerprint. EURASIP J. Wirel. Commun. Netw. 1, 2019 (2019). https://doi.org/10.1186/s13638-019-1544-8

    Article  Google Scholar 

  118. Chen S., Xie F., Chen Y., Song H., Wen H.: Identification of wireless transceiver devices using radio frequency (RF) fingerprinting based on STFT analysis to enhance authentication security. in 2017 IEEE 5th International Symposium on Electromagnetic Compatibility (EMC-Beijing), (2017), pp. 1–5. doi: https://doi.org/10.1109/EMC-B.2017.8260381.

  119. Abbas S. et al., Improving security of the internet of things via RF fingerprinting based device identification system. Neural Comput Appl, pp. 1–17, (2021), doi: https://doi.org/10.1007/s00521-021-06115-2.

  120. Lin Y., Chang J.: Improving wireless network security based on radio fingerprinting. Proceedings - Companion of the 19th IEEE International Conference on Software Quality, Reliability and Security, QRS-C 2019, pp. 375–379, (2019), doi: https://doi.org/10.1109/QRS-C.2019.00076.

  121. Patel, H.J., Temple, M.A., Baldwin, R.O.: Improving ZigBee device network authentication using ensemble decision tree classifiers with radio frequency distinct native attribute fingerprinting. IEEE Trans. Reliab. 64(1), 221–233 (2015). https://doi.org/10.1109/TR.2014.2372432

    Article  Google Scholar 

  122. Wilson A.J., Reising D.R., Loveless T.D.: Integration of matched filtering within the RF-DNA fingerprinting process. IEEE Global Communications Conference, GLOBECOM 2019 - Proceedings, pp. 2–7, (2019), doi: https://doi.org/10.1109/GLOBECOM38437.2019.9014225.

  123. Cobb, W.E., Laspe, E.D., Baldwin, R.O., Temple, M.A., Kim, Y.C.: Intrinsic physical-layer authentication of integrated circuits. IEEE Trans. Inf. Forensics Secur. 7(1), 14–24 (2012). https://doi.org/10.1109/TIFS.2011.2160170

    Article  Google Scholar 

  124. Bassey J., Adesina D., Li X., Qian L., Aved A., Kroecker T.: Intrusion detection for IoT devices based on RF fingerprinting using deep learning. in 2019 4th International Conference on Fog and Mobile Edge Computing, FMEC 2019, IEEE, pp. 98–104. (2019), https://doi.org/10.1109/FMEC.2019.8795319.

  125. Jafari H., Omotere O., Adesina D., Wu H. H., Qian L.: IoT devices fingerprinting using deep learning. in Proceedings IEEE Military Communications Conference MILCOM, pp. 901–906, (2019), doi: https://doi.org/10.1109/MILCOM.2018.8599826.

  126. Nouichi D., Abdelsalam M., Nasir Q., Abbas S.: IoT devices security using RF fingerprinting. in Advances in Science and Engineering Technology International Conferences, ASET 2019, IEEE, pp. 1–7, (2019) https://doi.org/10.1109/ICASET.2019.8714205

  127. Youssef, K., Bouchard, L.S., Haigh, K.Z., Krovi, H., Silovsky, J., Vander Valk, C.P.: Machine learning approach to RF transmitter identification. ArXiv 2(4), 197–205 (2017). https://doi.org/10.1109/jrfid.2018.2880457

    Article  Google Scholar 

  128. Baldini G., Giuliani R., Gentile C., Steri G.: Measures to address the lack of portability of the RF fingerprints for radiometric identification. in 9th IFIP International Conference on New Technologies, Mobility and Security, NTMS 2018 - Proceedings, vol. 2018-Janua, pp. 1–5, (2018), doi: https://doi.org/10.1109/NTMS.2018.8328703.

  129. Yang, K., Kang, J., Jang, J., Lee, H.N.: Multimodal sparse representation-based classification scheme for RF fingerprinting. IEEE Commun. Lett. 23(5), 867–870 (2019). https://doi.org/10.1109/LCOMM.2019.2905205

    Article  Google Scholar 

  130. Tian, Q., et al.: New security mechanisms of high-reliability IoT communication based on radio frequency fingerprint. IEEE Internet Things J. 6(5), 7980–7987 (2019). https://doi.org/10.1109/JIOT.2019.2913627

    Article  Google Scholar 

  131. Sankhe, K., et al.: No radio left behind: radio fingerprinting through deep learning of physical-layer hardware impairments. IEEE Trans. Cogn. Commun. Netw. 6(1), 165–178 (2020). https://doi.org/10.1109/TCCN.2019.2949308

    Article  Google Scholar 

  132. Patel H.: Non-parametric feature generation for RF-fingerprinting on ZigBee devices. in 2015 IEEE Symposium on Computational Intelligence for Security and Defense Applications, CISDA 2015 - Proceedings, pp. 178–182, (2015), https://doi.org/10.1109/CISDA.2015.7208645.

  133. Xie, F., et al.: Optimized coherent integration-based radio frequency fingerprinting in internet of things. IEEE Internet Things J. 5(5), 3967–3977 (2018). https://doi.org/10.1109/JIOT.2018.2871873

    Article  Google Scholar 

  134. Mohamed, I.S., Dalveren, Y., Kara, A.: Performance assessment of transient signal detection methods and superiority of energy criterion (EC) method. IEEE Access 8, 115613–115620 (2020). https://doi.org/10.1109/ACCESS.2020.3004492

    Article  Google Scholar 

  135. Baldini, G., Giuliani, R., Dimc, F.: Physical layer authentication of Internet of Things wireless devices using convolutional neural networks and recurrence plots. Internet Technol Lett 2(2), e81 (2019). https://doi.org/10.1002/itl2.81

    Article  Google Scholar 

  136. Cobb W.E., Garcia E.W., Temple M.A., Baldwin R.O., Kim Y.C.: Physical layer identification of embedded devices using RF-DNA fingerprinting. in 2010 MILCOM 2010 military communications conference, pp. 2168–2173, (2010) https://doi.org/10.1109/MILCOM.2010.5680487

  137. Jiang, Y., Peng, L., Hu, A., Wang, S., Huang, Y., Zhang, L.: Physical layer identification of LoRa devices using constellation trace figure. EURASIP J. Wirel. Commun. Netw. 1, 2019 (2019). https://doi.org/10.1186/s13638-019-1542-x

    Article  Google Scholar 

  138. Ding G., Huang Z., Wang X.: Radio frequency fingerprint extraction based on singular values and singular vectors of time-frequency spectrum. in 2018 IEEE International Conference on Signal Processing, Communications and Computing, ICSPCC 2018, pp. 1–6, (2018), https://doi.org/10.1109/ICSPCC.2018.8567765.

  139. Yu et al., J. Radio frequency fingerprint identification based on denoising autoencoders. ArXiv, (2019).

  140. Chen, S.: Radio frequency fingerprint-based intelligent mobile edge computing for internet of things authentication. Sensors 19(16), 3610 (2019). https://doi.org/10.3390/s19163610

    Article  Google Scholar 

  141. Padilla, P., Padilla, J.L., Valenzuela-Valdés, J.F.: Radiofrequency identification of wireless devices based on RF fingerprinting. Electron. Lett. 49(22), 1409–1410 (2013). https://doi.org/10.1049/el.2013.2759

    Article  Google Scholar 

  142. Guo X., and S. Liu, Research on communication individual identification method based on PCA-NCA and CV-SVM. in Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, Springer, (2019), pp. 12–19. https://doi.org/10.1007/978-3-030-36402-1_2.

  143. Tian, Q., Jia, J., Hou, C.: Research on fingerprint identification of wireless devices based on information fusion. Mobile Netw. Appl. 25(6), 2359–2366 (2020). https://doi.org/10.1007/s11036-020-01613-4

    Article  Google Scholar 

  144. Xu C., Chen B., Liu Y., He F., Song H.: RF fingerprint measurement for detecting multiple amateur drones based on STFT and feature reduction. in Integrated Communications, Navigation and Surveillance Conference, ICNS, vol. 2020-Septe, pp. 1–7, (2020), https://doi.org/10.1109/ICNS50378.2020.9223013.

  145. Padilla, J.L., Padilla, P., Valenzuela-Valdés, J.F., Ramírez, J., Górriz, J.M.: RF fingerprint measurements for the identification of devices in wireless communication networks based on feature reduction and subspace transformation. Measurement 58, 468–475 (2014). https://doi.org/10.1016/j.measurement.2014.09.009

    Article  Google Scholar 

  146. Kose, M., Tascioglu, S., Telatar, Z.: RF fingerprinting of IoT devices based on transient energy spectrum. IEEE Access 7, 18715–18726 (2019). https://doi.org/10.1109/ACCESS.2019.2896696

    Article  Google Scholar 

  147. Roy D., Mukherjee T., Chatterjee M., Pasiliao E.: RF transmitter fingerprinting exploiting spatio-temporal properties in raw signal data. Proceedings - 18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019, pp. 89–96, (2019), doi: https://doi.org/10.1109/ICMLA.2019.00023.

  148. Fadul M.K.M., Reising D.R., Loveless T.D., Ofoli A.R.: RF-DNA fingerprint classification of OFDM signals using a rayleigh fading channel model. IEEE Wireless Communications and Networking Conference, WCNC, 2019, pp. 1–7, 2019, doi: https://doi.org/10.1109/WCNC.2019.8885421.

  149. Williams M.D., Munns S.A., Temple M.A., Mendenhall M.J.: RF-DNA fingerprinting for airport WiMax communications security. Proceedings - 2010 4th International Conference on Network and System Security, NSS 2010, pp. 32–39, 2010, https://doi.org/10.1109/NSS.2010.21.

  150. Fard, H.B., Amin, M., Chouinard, J.Y., Lebel, B.: Rogue device discrimination in ZigBee networks using wavelet transform and autoencoders. Annal. des Telecommun. 76(1–2), 27–42 (2021). https://doi.org/10.1007/s12243-020-00796-x

    Article  Google Scholar 

  151. Talbot C., Temple M., Carbino T.: Securing insteon home automation systems using radio frequency distinct native attribute (RF-DNA) fingerprints. in Proceedings of the 12th International Conference on Cyber Warfare and Security (ICCWS), , pp. 497–505, (2017)

  152. Pan, Y., Yang, S., Peng, H., Li, T., Wang, W.: Specific emitter identification based on deep residual networks. IEEE Access 7, 54425–54434 (2019). https://doi.org/10.1109/ACCESS.2019.2913759

    Article  Google Scholar 

  153. Huang, G., Yuan, Y., Wang, X., Huang, Z.: Specific emitter identification based on nonlinear dynamical characteristics. Can. J. Electr. Comput. Eng. 39(1), 34–41 (2016). https://doi.org/10.1109/CJECE.2015.2496143

    Article  Google Scholar 

  154. Yuan, Y.-J., Huang, Z.-T., Sha, Z.-C.: Specific emitter identification based on transient trajectory. PIER C 44, 67–82 (2013). https://doi.org/10.2528/PIERC13080703

    Article  Google Scholar 

  155. Ding, L., Wang, S., Wang, F., Zhang, W.: Specific emitter identification via convolutional neural networks. IEEE Commun. Lett. 22(12), 2591–2594 (2018). https://doi.org/10.1109/LCOMM.2018.2871465

    Article  Google Scholar 

  156. Kroon, B., Bergin, S., Kennedy, I.O., Zamora, G.O.’M.: Steady state RF fingerprinting for identity verification: one class classifier versus customized ensemble. In: Coyle, L., Freyne, J. (eds.) Artificial Intelligence and Cognitive Science, pp. 198–206. Springer Berlin Heidelberg, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17080-5_22

    Chapter  Google Scholar 

  157. Ur Rehman S., Sowerby K., Coghill C., Holmes W.: The analysis of RF fingerprinting for low-end wireless receivers with application to IEEE 802.11a. 2012 International Conference on Selected Topics in Mobile and Wireless Networking, ICOST pp. 24–29, (2012), https://doi.org/10.1109/iCOST.2012.6271285.

  158. Baldini G., Giuliani R., Steri G., Sanchez I., Gentile C.: The application of the symbolic aggregate approximation algorithm (SAX) to radio frequency fingerprinting of IoT devices. in 2017 IEEE Symposium on Communications and Vehicular Technology (SCVT), pp. 1–6. (2017), https://doi.org/10.1109/SCVT.2017.8240312.

  159. Lin, Y., Zhu, X., Zheng, Z., Dou, Z., Zhou, R.: The individual identification method of wireless device based on dimensionality reduction and machine learning. J. Supercomput. 75(6), 3010–3027 (2019). https://doi.org/10.1007/s11227-017-2216-2

    Article  Google Scholar 

  160. Li Y., Chen X., Chang J., Lin Y.: The physical layer identification of communication devices based on RF-DNA. in Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, vol. 279, Springer International Publishing, pp. 452–460. 2019, https://doi.org/10.1007/978-3-030-19086-6_50.

  161. Danev, B., Capkun, S., Jayaram, M.R., Benjamin, T.S.: Towards practical identification of HF RFID devices. ACM Trans. Inf. Syst. Secur. 15(2), 1–24 (2012). https://doi.org/10.1145/2240276.2240278

    Article  Google Scholar 

  162. Zhang, Z., Guo, X., Lin, Y.: Trust management method of D2D communication based on RF fingerprint identification. IEEE Access 6, 66082–66087 (2018). https://doi.org/10.1109/ACCESS.2018.2878595

    Article  Google Scholar 

  163. Zamora, G.O.’M., Bergin, S., Kennedy, I.O.: Using support vector machines for passive steady state RF fingerprinting. In: Sobh, T., Elleithy, K., Mahmood, A. (eds.) Novel algorithms and techniques in telecommunications and networking, pp. 183–188. Springer Netherlands, Dordrecht (2010). https://doi.org/10.1007/978-90-481-3662-9_31

    Chapter  Google Scholar 

  164. Aghnaiya, A., Ali, A.M., Kara, A.: Variational mode decomposition-based radio frequency fingerprinting of bluetooth devices. IEEE Access 7, 144054–144058 (2019). https://doi.org/10.1109/ACCESS.2019.2945121

    Article  Google Scholar 

  165. Lin Y., Jia J., Wang S., Ge B., Mao S.: Wireless device identification based on radio frequency fingerprint features. IEEE International Conference on Communications, pp. 1–6, (2020), https://doi.org/10.1109/ICC40277.2020.9149226.

  166. Knox, D.A., Kunz, T.: Wireless fingerprints inside a wireless sensor network. ACM Trans. Sen. Netw. 11(2), 1–30 (2015). https://doi.org/10.1145/2658999

    Article  Google Scholar 

  167. Wang, W., Sun, Z., Piao, S., Zhu, B., Ren, K.: Wireless physical-layer identification: modeling and validation. IEEE Trans. Inf. Forensics Secur. 11(9), 2091–2106 (2016). https://doi.org/10.1109/TIFS.2016.2552146

    Article  Google Scholar 

  168. Yang, Y., Hu, A., Xing, Y., Yu, J., Zhang, Z.: A data-independent radio frequency fingerprint extraction scheme. IEEE Wireless Commun. Lett. 10(11), 2524–2527 (2021). https://doi.org/10.1109/LWC.2021.3106396

    Article  Google Scholar 

  169. Xie, R., et al.: A generalizable model-and-data driven approach for open-set RFF authentication. IEEE Trans. Inf. Forensics Secur. 16, 4435–4450 (2021). https://doi.org/10.1109/TIFS.2021.3106166

    Article  Google Scholar 

  170. Jiang, Y., Fu, H., Hu, A., Sun, W.: A LoRa-based lightweight secure access enhancement system. Security Commun. Netw. 2021, 1–16 (2021). https://doi.org/10.1155/2021/3530509

    Article  Google Scholar 

  171. Zhou, X., Hu, A., Li, G., Peng, L., Xing, Y., Yu, J.: A robust radio-frequency fingerprint extraction scheme for practical device recognition. IEEE Internet Things J. 8(14), 11276–11289 (2021). https://doi.org/10.1109/JIOT.2021.3051402

    Article  Google Scholar 

  172. Wang, W., Sanchez, I.A., Caparra, G., McKeown, A., Whitworth, T., Lohan, E.S.: A survey of spoofer detection techniques via radio frequency fingerprinting with focus on the GNSS pre-correlation sampled data. Sensors 21(9), 3012 (2021). https://doi.org/10.3390/s21093012

    Article  Google Scholar 

  173. Li Q., Jin Y., Yan S., Han S.: Emitter identification based on improved variational modal decomposition at low SNR. in Proceedings - 2021 International Conference on Artificial Intelligence and Electromechanical Automation, AIEA 2021, Institute of Electrical and Electronics Engineers Inc., pp. 152–156. (2021), https://doi.org/10.1109/AIEA53260.2021.00040

  174. Chen, Z., Peng, L., Aiqun, H., Hua, F.: Generative adversarial network-based rogue device identification using differential constellation trace figure. EURASIP J. Wireless Commun. Netw. (2021). https://doi.org/10.1186/s13638-021-01950-2

    Article  Google Scholar 

  175. Li Y., Ding Y., Goussetis G., Zhang J.: Power amplifier enabled RF fingerprint identification. in Proceedings of the 2021 IEEE Texas Symposium on Wireless and Microwave Circuits and Systems: Making Waves in Texas, WMCS 2021, Institute of Electrical and Electronics Engineers Inc., (2021). doi: https://doi.org/10.1109/WMCS52222.2021.9493272.

  176. Lin Y., Li J., Chen L., Zhang G.: Power spectrum based Wi-Fi RF fingerprint extraction method. in Proceedings–2021 13th International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2021, Institute of Electrical and Electronics Engineers Inc., 2021, pp. 105–109. doi: https://doi.org/10.1109/ICMTMA52658.2021.00033.

  177. Liu, Y., et al.: Zero-bias deep learning for accurate identification of internet-of-things (IoT) devices. IEEE Internet Things J. 8(4), 2627–2634 (2021). https://doi.org/10.1109/JIOT.2020.3018677

    Article  Google Scholar 

  178. Shen G., Zhang J., Marshall A., Woods R., Cavallaro J., Chen L.: Towards receiver-agnostic and collaborative radio frequency fingerprint identification. (2022), [Online]. Available: http://arxiv.org/abs/2207.02999

  179. Taşcıoğlu, S., Köse, M., Soysal, G.: Sequential transient detection for RF fingerprinting. Electronics 11(20), 3333 (2022). https://doi.org/10.3390/electronics11203333

    Article  Google Scholar 

  180. Jagannath A., Jagannath J.: Embedding-assisted attentional deep learning for real-world RF fingerprinting of Bluetooth. 2022, [Online]. Available: http://arxiv.org/abs/2210.02897

  181. Wei, J., Yu, L., Zhu, L., Zhou, X.: RF fingerprint extraction method based on CEEMDAN and multidomain joint entropy. Wirel. Commun. Mob. Comput. 2022, 6565 (2022). https://doi.org/10.1155/2022/5326892

    Article  Google Scholar 

  182. Shao, Z., Lv, Z., Wang, W., Zhang, T.: Research on illegal mobile device identification based on radio frequency fingerprint feature. Electronics 12(14), 3144 (2023). https://doi.org/10.3390/electronics12143144

    Article  Google Scholar 

  183. Li, Y., Ding, Y., Zhang, J., Goussetis, G., Podilchak, S.K.: Radio frequency fingerprinting exploiting non-linear memory effect. IEEE Trans. Cogn. Commun. Netw. 8(4), 1618–1631 (2022). https://doi.org/10.1109/TCCN.2022.3212414

    Article  Google Scholar 

  184. Zhao, C., Yu, J., Luo, G., Wu, Z.: Radio frequency fingerprinting identification of few-shot wireless signals based on deep metric learning. Wirel. Commun. Mob. Comput. 2023, 1–13 (2023). https://doi.org/10.1155/2023/2132148

    Article  Google Scholar 

  185. He, J., Huang, S., Chang, S., Wang, F., Shen, B.Z., Feng, Z.: Radio frequency fingerprint identification with hybrid time-varying distortions. IEEE Trans. Wirel. Commun. (2023). https://doi.org/10.1109/TWC.2023.3245070

    Article  Google Scholar 

  186. Zhang, J., Wang, Q., Guo, X., Zheng, X., Liu, D.: Radio frequency fingerprint identification based on logarithmic power cosine spectrum. IEEE Access 10, 79165–79179 (2022). https://doi.org/10.1109/ACCESS.2022.3194124

    Article  Google Scholar 

  187. Zeng Y. et al.: Multi-channel attentive feature fusion for radio frequency fingerprinting. (2023), [Online]. Available: http://arxiv.org/abs/2303.10691

  188. Fu, H., Peng, L., Liu, M., Hu, A.: Deep learning-based RF fingerprint identification with channel effects mitigation. IEEE Open J. Commun. Soc. 4, 1668–1681 (2023). https://doi.org/10.1109/OJCOMS.2023.3295379

    Article  Google Scholar 

  189. Baldini, G., Amerini, I., Dimc, F., Bonavitacola, F.: Convolutional neural networks combined with feature selection for radio-frequency fingerprinting. Comput. Intell. (2023). https://doi.org/10.1111/coin.12592

    Article  Google Scholar 

  190. Shi J. et al.: A radio frequency fingerprint identification method for wireless devices based on ShuffleNet-SVM. in 2022 IEEE 8th International Conference on Computer and Communications, ICCC 2022, Institute of Electrical and Electronics Engineers Inc., (2022), pp. 1794–1800. https://doi.org/10.1109/ICCC56324.2022.10065708.

  191. Zhang, W., Zhao, W., Tan, X., Shao, L., Ran, C.: Adaptive RF fingerprints fusion via dual attention convolutions. IEEE Internet Things J. 9(24), 25181–25195 (2022). https://doi.org/10.1109/JIOT.2022.3195736

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere gratitude to the UAE General Civil Aviation Authority for establishing the Aerospace Center of Excellence and conducting this research study.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Research was supervised by Sohail Abbas, Manar Abu Talib, and Qassim Nasir. Data collection, material preparation, and analysis were performed by Sally Idhis, Mariam Alaboudi, and Ali Mohamed. Sohail Abbas contributed significantly in producing the final version of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sohail Abbas.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Human or animal rights

This article does not contain any studies involving animals performed by any of the authors.

Informed consent

This is not applicable to our study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

See Tables 8 and 9.

Table 8 Papers used in the SLR
Table 9 QAR scores

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, S., Abu Talib, M., Nasir, Q. et al. Radio frequency fingerprinting techniques for device identification: a survey. Int. J. Inf. Secur. 23, 1389–1427 (2024). https://doi.org/10.1007/s10207-023-00801-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10207-023-00801-z

Keywords

Navigation