Skip to main content
Log in

Profit testing of profit sharing life insurance policies when asset returns are variance gamma distributed

  • Published:
Decisions in Economics and Finance Aims and scope Submit manuscript

Abstract

This paper examines the profit testing of life insurance companies that issue participating policies, type B and type A universal life policies, and variable annuities with guaranteed minimum maturity and death benefits, when investment returns are stochastic and modeled by normal or variance gamma distributions. We rely on the stochastic profit testing techniques introduced in Dickson et al. (Actuarial mathematics for life contingent risks, 2nd edn, Cambridge University Press, Cambridge, 2013) to examine the influence of the models’ parameters and of the models themselves on the profit testing indicators. We show that the variance gamma model results in more conservative predictions than the normal model for most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

Notes

  1. We first write:

    $$\begin{aligned} V_{t-1}=S\left( A_{x+t-1}-\frac{A_x}{\ddot{a}_{x}}\ddot{a}_{x+t-1}\right) . \end{aligned}$$

    Then, we observe that

    $$\begin{aligned} V_{t-1}=S\left( 1-(1-v_V)\ddot{a}_{x+t-1}-(1-(1-v_V)\ddot{a}_x)\frac{\ddot{a}_{x+t-1}}{\ddot{a}_{x}}\right) =S\left( 1-\frac{\ddot{a}_{x+t-1}}{\ddot{a}_{x}}\right) . \end{aligned}$$

References

  • Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974)

    Article  Google Scholar 

  • Applebaum, D.: Lévy Processes and Stochastic Calculus, Cambridge Studies in Advance Mathematics, 2nd edn. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  • Ballotta, L., Bonfiglioli, E.: Multivariate asset models using Lévy processes and applications. Eur. J. Finance 22, 1320–1350 (2016)

    Article  Google Scholar 

  • Ballotta, L., Haberman, S., Wang, N.: Guarantees in with-profit and unitized wth-profit life insurance contracts: fair valuation problem in presence of the default option. J. Risk Insur. 73, 97–121 (2006)

    Article  Google Scholar 

  • Belth, J.M.: A note on disclosure of realized rates of return for retirement accumulations, savings accounts, and the savings component of universal life insurance policies. J. Risk Insur. 49, 613–617 (1982)

    Article  Google Scholar 

  • Carr, P., Chang, E., Madan, D.: The variance gamma process and option pricing. Eur. Finance Rev. 2, 79–105 (1998)

    Article  Google Scholar 

  • Carson, J.: Determinants of universal life insurance cash values. J. Risk Insur. 63, 673–681 (1996)

    Article  Google Scholar 

  • Cherin, A.C., Hutchins, R.C.: The rate of return on universal life insurance. J. Risk Insur. 54, 691–711 (1987)

    Article  Google Scholar 

  • Chung, Y., Skipper, H.: The effect of interest rates on surrender values of universal life policies. J. Risk Insur. 54, 341–347 (1987)

    Article  Google Scholar 

  • Da Fonseca, J., Ziveyi, J.: Valuing variable annuity guarantees on multiple assets. Scand. Actuar. J. 2017, 209–230 (2017)

    Google Scholar 

  • D’Agostino, L.: Life insurance profit testing in the Solvency II framework. Banca Impresa Società 1, 43–78 (2014)

    Google Scholar 

  • D’Arcy, S.P., Lee, K.C.: Universal/variable life insurance versus similar unbundled investment strategies. J. Risk Insur. 54, 452–477 (1987)

    Article  Google Scholar 

  • D’Arcy, S.P., Lee, K.C.: The optimal investment strategy through variable universal life insurance. J. Risk Insur. 56, 201–217 (1989)

    Article  Google Scholar 

  • Dickson, D.C.M., Hardy, M.R., Waters, H.R.: Actuarial Mathematics for Life Contingent Risks, 2nd edn. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  • Eberlein, E., Raible, S.: Term structure models driven by general Lévy processes. Math. Finance 9, 31–54 (1999)

    Article  Google Scholar 

  • Eberlein, E., Oezkan, F.: The defaultable Lévy term structure: ratings and restructuring. Math. Finance 13, 277–300 (2003)

    Article  Google Scholar 

  • Eberlein, E., Madan, D.: On Correlating Lévy Processes. Robert H, Smith School Research Paper (2009)

  • Gao, J., Ulm, E.: Optimal consumption and allocation in variable annuities with guaranteed minimum death benefits. Insur.: Math. Econ. 51, 586–598 (2012)

    Google Scholar 

  • Gatzert, N., Kling, A.: Analysis of participating life insurance contracts: a unification approach. J. Risk Insur. 74, 547–570 (2007)

    Article  Google Scholar 

  • Gatzert, N., Schmeiser, H.: Assessing the risk potential of premium payment options in participating life insurance contracts. J. Risk Insur. 75, 691–712 (2008)

    Article  Google Scholar 

  • Gatzert, N., Schmitt-Hoermann, G.: Understanding the death benefit switch option in universal life policies. J. Risk Insur. 78, 823–852 (2011)

    Article  Google Scholar 

  • Hoyt, R.: Modeling insurance cash flows for universal life policies. J. Actuar. Pract. 2, 197–220 (1994)

    Google Scholar 

  • Kallsen, J., Tankov, P.: Characterization of dependence of multidimensional L\(\acute{e}\)vy processes Using L\(\acute{e}\)vy Copulas. J. Multivar. Anal. 97, 1551–1572 (2006)

    Article  Google Scholar 

  • Kelani, A., Quittard-Pinon, F.: Pricing and hedging variable annuities in a Lévy market: a risk management perspective. J. Risk Insur. 84, 209–238 (2017)

    Article  Google Scholar 

  • Le Courtois, O., Walter, C.: The computation of risk budgets under the Lévy process assumption. Revue Finance 35, 87–108 (2014)

    Google Scholar 

  • Le Courtois, O., Xu, X.: Efficient portfolios and extreme risks: a Pareto–Dirichlet approach. Ann. Oper. Res. (2023)

  • Madan, D., Seneta, E.: The variance gamma (V.G.) model for share market returns. J. Bus. 63, 511–524 (1990)

    Article  Google Scholar 

  • Madan, D., Milne, F.: Option pricing with VG martingale components. Math. Finance 1, 39–55 (1991)

    Article  Google Scholar 

  • Ng, A.-Y., Li, J.-H.: Pricing and hedging variable annuity guarantees with multiasset stochastic investment models. N. Am. Actuar. J. 17, 41–62 (2013)

    Article  Google Scholar 

  • Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978)

    Article  Google Scholar 

  • Valkenburg, F.R.: Managers Do Not Lean Back. A Profit Testing Model that Evaluates Scenario Dependent Management Dicision. AFIR Colloquium Nurnberg, Germany, pp. 545–572 (1996)

  • Vuong, Q.H.: Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica 57(2), 307–333 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Le Courtois.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we deduct the expression of Eq. (11) by using two representations of the variance gamma process. The first of these representations is Eq. (4), while the second of these representations is a Brownian motion W(t) with drift \(\theta t\), both subject to a random time change that follows a gamma process, as in Carr et al. (1998):

$$\begin{aligned} VG(\delta ,\zeta ,\nu ,\theta )=\delta +\theta \Gamma \left( \frac{1}{\nu },\frac{1}{\nu }\right) +\zeta W\left( \Gamma \left( \frac{1}{\nu },\frac{1}{\nu }\right) \right) , \end{aligned}$$
(21)

where \(\Gamma \left( \frac{1}{\nu },\frac{1}{\nu }\right) \) is a gamma random variable with shape and size parameters both equal to \(\frac{1}{\nu }\).

From Applebaum (2009), Eq. (21) can also be written as

$$\begin{aligned} VG(\delta ,\zeta ,\nu ,\theta )=\delta +\Gamma \left( \frac{1}{\nu },\frac{1}{\mu _p\nu }\right) -\Gamma \left( \frac{1}{\nu },\frac{1}{\mu _q\nu }\right) , \end{aligned}$$
(22)

where \(\mu _p=\frac{1}{2}\sqrt{\theta ^2+\frac{2\zeta ^2}{\nu }}+\frac{\theta }{2}\) and \(\mu _q=\frac{1}{2}\sqrt{\theta ^2+\frac{2\zeta ^2}{\nu }}-\frac{\theta }{2}\).

Then, Eqs. (4) and (22) can be linked as follows:

$$\begin{aligned} \left\{ \begin{array}{ll} \delta =\mu ^v, &{}\quad \theta =\frac{\eta }{\alpha }-\frac{\eta }{\beta },\\ \nu =\frac{1}{\eta }, &{}\quad \zeta =\sqrt{\frac{2\eta }{\alpha \beta }}. \end{array}\right. \end{aligned}$$
(23)

We now model the correlated variance gamma processes. We use the representation in Eberlein and Madan (2009) that yields:

$$\begin{aligned} VG_i=\delta _i+\theta _i\Gamma \left( \frac{1}{\nu _i},\frac{1}{\nu _i}\right) +\zeta _i \sqrt{\Gamma \left( \frac{1}{\nu _i},\frac{1}{\nu _i}\right) }Z_i, \qquad i=1,2, \end{aligned}$$
(24)

where \(Z_i\) are standard normal variables with correlation \(\rho '\).

We denote \(\Gamma _i=\Gamma \left( \frac{1}{\nu _i},\frac{1}{\nu _i}\right) \) and obtain:

$$\begin{aligned} \hbox {Cov}(VG_1,VG_2)=\zeta _1\zeta _2E(\sqrt{\Gamma _1})E(\sqrt{\Gamma _2})\rho ', \end{aligned}$$

where

$$\begin{aligned} E(\sqrt{\Gamma _i})=\frac{\sqrt{\nu _i}{\widetilde{\Gamma }}(\frac{1}{\nu _i}+\frac{1}{2})}{{\widetilde{\Gamma }}(\frac{1}{\nu _i})}, \end{aligned}$$

and where \({\widetilde{\Gamma }}(\cdot )\) is the gamma function.

Using the parametrization of Eq. (4), we already know that

$$\begin{aligned} \hbox {Cov}(VG_1,VG_2)=\rho \sqrt{V\hbox {ar}(VG_1)}\sqrt{V\hbox {ar}(VG_2)}=\rho \sqrt{\eta _1\eta _2\left( \frac{1}{\alpha _1^2}+\frac{1}{\beta _1^2}\right) \left( \frac{1}{\alpha _2^2}+\frac{1}{\beta _2^2}\right) }, \end{aligned}$$

where \(\rho \) is the correlation between the two returns \(VG_1\) and \(VG_2\). \(\rho '\) can be expressed explicitly as a function of the parameters \((\mu ^v_i,\eta _i,\alpha _i,\beta _i)\):

$$\begin{aligned} \rho '=\frac{\rho \sqrt{\alpha _1\alpha _2\beta _1\beta _2\left( \frac{1}{\alpha _1^2}+\frac{1}{\beta _1^2}\right) \left( \frac{1}{\alpha _2^2}+\frac{1}{\beta _2^2}\right) }}{\sqrt{\frac{4}{\eta _1\eta _2}}\frac{{\widetilde{\Gamma }}(\eta _1+\frac{1}{2})}{{\widetilde{\Gamma }}(\eta _1)}\frac{{\widetilde{\Gamma }}(\eta _2+\frac{1}{2})}{{\widetilde{\Gamma }}(\eta _2)}}. \end{aligned}$$
(25)

Finally, we substitute the Eq. (23) into the Eq. (24) and we obtain Eq. (11).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Courtois, O., Shen, L. Profit testing of profit sharing life insurance policies when asset returns are variance gamma distributed. Decisions Econ Finan (2024). https://doi.org/10.1007/s10203-024-00440-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10203-024-00440-6

Keywords

JEL codes

Navigation