Skip to main content
Log in

Surrender and path-dependent guarantees in variable annuities: integral equation solutions and benchmark methods

  • Published:
Decisions in Economics and Finance Aims and scope Submit manuscript

Abstract

We investigate the evaluation problem of variable annuities by considering guaranteed minimum maturity benefits, with constant or path-dependent guarantees of up-and-out barrier and lookback type, and guaranteed minimum accumulation benefit riders, with different forms of the surrender amount. We propose to solve the non-standard Volterra integral equations associated with the policy valuations through a randomized trapezoidal quadrature rule combined with an interpolation technique. Such a rule improves the converge rate with respect to the classical trapezoidal quadrature, while the interpolation technique allows us to obtain an efficient algorithm that produces a very accurate approximation of the early exercise boundary. The method accuracy is assessed by constructing two benchmarks: The first one, developed in a lattice framework, is characterized by a novel algorithm for the lookback path-dependent guarantee obtained thanks to the lattice convergence properties, while the application is straightforward in the other cases; the second one is based on the least-squares Monte Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. https://www.limra.com/en/newsroom/news-releases/2021/secure-retirement-institute-strong-economic-factors-drive-first-quarter-annuity-sales/.

  2. In the discussion of Model 3, the quantity in (5) will be made explicit when presenting a different form.

References

  • Bernard, C., MacKay, A., Muehlbeyer, M.: Optimal surrender policy for variable annuity guarantees. Insur. Math. Econ. 55, 116–128 (2014)

    Article  Google Scholar 

  • Bernard, C., MacKay, A.: Reducing surrender incentives through fee structure in variable annuities. In: Kathrin, G., Matthias, S., Rudi, Z. (eds.), Innovation in Quantitative Risk Management, pp. 209–223. Springer (2015)

  • Brennan, M., Schwartz, E.: The pricing of equity-linked life insurance policies with an asset value guarantee. J. Financ. Econ. 3, 195–213 (1976)

    Article  Google Scholar 

  • Brown, J., Poterba, J.: Household ownership of variable annuities. In: Poterba, J. (ed.) Tax Policy and the Economy, vol. 20. National Bureau of Economic Research Inc (2006)

    Google Scholar 

  • Cox, J., Ross, S., Rubinstein, M.: Option pricing: a simplified approach. J. Financ. Econ. 3, 229–263 (1979)

    Article  Google Scholar 

  • Dai, M., Kwok, Y.K.: American options with lookback payoff. SIAM J. Appl. Math. 66, 206–227 (2005)

    Article  Google Scholar 

  • Huang, J.Z., Subrahmanyam, M.G., Yu, G.G.: Pricing and hedging American options: a recursive integration method. Rev. Finan. Stud. 9, 277–300 (1996)

    Article  Google Scholar 

  • Holland, D., Simonelli, A.: Variable annuity sales increase sharply, VA net assets approaching \$2 trillion Mark; fixed indexed annuity sales record second strongest quarter ever. Insured Retiment Institute Issues Second-Quarter 2015 Annuity Sales Report (2015)

  • Jacka, S.D.: Optimal stopping and the American put. Math. Financ. 1, 1–14 (1991)

    Article  Google Scholar 

  • Jamshidian, F.: An analysis of American options. Rev. Futur. Mark. 11, 72–80 (1992)

    Google Scholar 

  • Jeon, J., Kwak, M.: Optimal surrender strategies and valuations of path-dependent guarantees in variable annuities. Insur. Math. Econ. 83, 93–109 (2018)

    Article  Google Scholar 

  • Jeon, J., Kwak, M.: Pricing variable annuity with surrender guarantee. J. Comput. Appl. Math. 393, 113508 (2021)

    Article  Google Scholar 

  • Kang, B., Ziveyi, J.: Optimal surrender of guaranteed minimum maturity benefits under stochastic volatility and interest rates. Insur. Math. Econ. 79, 43–56 (2018)

    Article  Google Scholar 

  • Kim, I.J.: The analytic valuation of American options. Rev. Financ. Stud. 3, 547–572 (1990)

    Article  Google Scholar 

  • Kimura, T.: American fractional lookback options: valuation and premium decomposition. SIAM J. Appl. Math. 71, 517–539 (2011)

    Article  Google Scholar 

  • Longstaff, F., Schwartz, E.: Valuing American options by simulation: a simple least-squares approach. Rev. Financ. Stud. 14, 113–147 (2001)

    Article  Google Scholar 

  • Milevsky, M.A., Salisbury, T.S.: Financial valuation of guaranteed minimum withdrawal benefits. Insur. Math. Econ. 38, 21–38 (2006)

    Article  Google Scholar 

  • Peskir, G., Shiryaev, A.: 2006. Birkháuser Verlag, Besel, Optimal stopping and free-boundary problems (2006)

  • Ritchken, P.: On pricing barrier options. J. Deriv. 3, 19–28 (1995)

    Article  Google Scholar 

  • Shen, Y., Sherris, M., Ziveyi, J.: Valuation of guaranteed minimum maturity benefits in variable annuities with surrender options. Insur. Math. Econ. 69, 127–137 (2016)

    Article  Google Scholar 

  • Sloane, W.R.: Life insurers, variable annuities and mutual funds: a critical study. J. Risk Insur. 37, 87–104 (1970)

    Article  Google Scholar 

  • Smith, M.: The life insurance policy as an options package. J. Risk Insur. 49, 583–601 (1982)

    Article  Google Scholar 

  • Walden, M.: The whole life insurance policy as an options package: an empirical investigation. J. Risk Insur. 52, 44–58 (1985)

    Article  Google Scholar 

  • Wu, Y.: A randomized trapezoidal quadrature. Int. J. Comput. Math. (2021). https://doi.org/10.1080/00207160.2021.1929194. (Online)

    Article  Google Scholar 

Download references

Funding

The authors declare that they have no funding to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Russo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Applying Proposition C.6 reported in Jeon and Kwak (2018) to problem (20), we obtain

$$\begin{aligned}{} & {} {\mathcal {L}}\overline{V}_3(t,x)=-\left( \varphi r-(\alpha -\kappa )e^{-\kappa (T-t)}x\right) \mathbbm {1}_{\left\{ x<e^{\kappa (T-t)}b_3(t)\right\} }\\{} & {} \quad -\left( -\frac{\varphi r}{\lambda }x^{1-\lambda }+\left( 1+\frac{1}{\lambda }\right) \varphi r (b_3(t))^{\lambda }x-(\alpha -\kappa )e^{-\kappa (T-t)}(b_3(t))^{1+\lambda }x\right) \mathbbm {1}_{\left\{ x>\frac{e^{-\kappa (T-t)}}{b_3(t)}\right\} } \end{aligned}$$

and

$$\begin{aligned} \overline{V}_3(T,x)=(\varphi -x)\mathbbm {1}_{\{x<\varphi \}}+\left( -\frac{\varphi x^{1-\lambda }}{\lambda }+\frac{\varphi ^{1+\lambda }x}{\lambda }\right) \mathbbm {1}_{\left\{ x>\frac{1}{\varphi }\right\} }, \end{aligned}$$

on the domain \(\mathcal {\overline{D}}_3\). Applying then Proposition C.4 in Jeon and Kwak (2018), we obtain

$$\begin{aligned} \overline{V}_3(t,x)= & {} \int _{0}^{\infty }(\varphi -u)\mathbbm {1}_{\{u<\varphi \}}\mathcal {G}\Big (T-t,\frac{x}{u} \Big )\frac{1}{u}\,du\\{} & {} \quad +\int _{0}^{\infty }\left( -\frac{\varphi u^{1-\lambda }}{\lambda }+\frac{\varphi ^{1+\lambda }u}{\lambda }\right) \mathbbm {1}_{\left\{ u>\frac{1}{\varphi }\right\} }\mathcal {G}\Big (T-t,\frac{x}{u} \Big )\frac{1}{u}\,du\\{} & {} \quad +\int _{t}^{T}\int _{0}^{\infty }\left( \varphi r-(\alpha -\kappa )e^{-\kappa (T-\eta )}u\right) \mathbbm {1}_{\left\{ u<e^{\kappa (T-\eta )}b_3(\eta )\right\} }\mathcal {G}\Big (\eta -t,\frac{x}{u}\Big )\frac{1}{u}\,du\,d\eta \\{} & {} \quad +\int _{t}^{T}\int _{0}^{\infty }\Bigg (-\frac{\varphi r}{\lambda }u^{1-\lambda }+\left( 1+\frac{1}{\lambda }\right) \varphi r (b_3(\eta ))^{\lambda }u\\{} & {} \quad -(\alpha -\kappa )e^{-\kappa (T-\eta )}(b_3(\eta ))^{1+\lambda }u\Bigg )\mathbbm {1}_{\left\{ u>\frac{e^{-\kappa (T-\eta )}}{b_3(\eta )}\right\} }\mathcal {G}\Big (\eta -t,\frac{x}{u}\Big )\frac{1}{u}dud\eta . \end{aligned}$$

By means of Lemma C.1 in Jeon and Kwak (2018) and making the substitutions \(\tau =T-t\), \(\xi =T-\eta \), and \(\widetilde{b}_3(\tau )= b_3(T-\tau )\), we obtain

$$\begin{aligned} \overline{V}_3(t,x)= & {} \varphi e^{-r\tau }\Phi \left( -d^-\left( \tau ,\frac{x}{\varphi }\right) \right) -xe^{-\alpha \tau }\Phi \left( -d^+\left( \tau ,\frac{x}{\varphi }\right) \right) \\{} & {} \quad +\frac{1}{\lambda }\Bigg [\varphi ^{1+\lambda }e^{-\alpha \tau }x\Phi (d^+(\tau ,\varphi x))\\{} & {} \quad -\varphi e^{-r\tau }x^{1-\lambda }\Phi \left( \frac{\log (\varphi x)+(r-\alpha -\sigma ^2(-0.5+\lambda ))\tau }{\sigma \sqrt{\tau }}\right) \Bigg ]\\{} & {} \quad +\varphi r \int _{0}^{\tau } e^{-r(\tau -\xi )}\Phi \left( -d^-\left( \tau -\xi ,\frac{x}{e^{\kappa \xi }\tilde{b}_3(\xi )}\right) \right) \,d\xi \\{} & {} \quad -(\alpha -\kappa )x \int _{0}^{\tau } e^{-\kappa \xi }e^{-\alpha (\tau -\xi )}\Phi \left( -d^+\left( \tau -\xi ,\frac{x}{e^{\kappa \xi }\tilde{b}_3(\xi )}\right) \right) d\xi \\{} & {} \quad -\frac{\varphi r}{\lambda }x^{1-\lambda } \int _{0}^{\tau } e^{-r(\tau -\xi )}\\{} & {} \quad \times \Phi \left( \frac{\log \left( xe^{\kappa \xi }\tilde{b}_3(\xi ) \right) +(r-\alpha -\sigma ^2(-0.5+\lambda ))(\tau -\xi )}{\sigma \sqrt{\tau -\xi }}\right) \,d\xi \\{} & {} \quad +\left( \frac{1+\lambda }{\lambda }\right) \varphi rx \int _{0}^{\tau } \tilde{b}_3(\xi )^{\lambda }e^{-\alpha (\tau -\xi )}\Phi \Big (d^+\Big (\tau -\xi ,xe^{\kappa \xi }\tilde{b}_3(\xi )\Big )\Big )d\xi \\{} & {} \quad -(\alpha -\kappa )x \int _{0}^{\tau } \tilde{b}_3(\xi )^{1+\lambda }e^{-\kappa \xi }e^{-\alpha (\tau -\xi )}\Phi \Big (d^+\Big (\tau -\xi ,xe^{\kappa \xi }\tilde{b}_3(\xi )\Big )\Big )d\xi . \end{aligned}$$

\(\square \)

Appendix B

1.1 Model 2

Suppose to consider Model 2 so that we consider equation (17). For the sake of simplicity, we define the quantity

$$\begin{aligned}{} & {} V^E_2\left( \tau ,e^{\kappa \tau }\widetilde{B}_{2}(\tau )\right) = Ge^{-r\tau }\Phi \left( -d^-\left( \tau ,\frac{e^{\kappa \tau }\widetilde{B}_{2}(\tau )}{G}\right) \right) \\{} & {} \quad -\widetilde{B}_{2}(\tau )e^{-(\alpha -\kappa )\tau }\Phi \left( -d^+\left( \tau ,\frac{e^{\kappa \tau }\widetilde{B}_{2}(\tau )}{G}\right) \right) , \end{aligned}$$

and, for \(w=0,1,\dots ,i-1\), we introduce the quantities \(z_w=t_w+\omega _w\Delta \) and \(\tilde{z}_w=t_w+\tilde{\omega }_w\Delta \), so that \(z_w, \tilde{z}_w\in [t_w, t_{w+1}]\). We observe that \(\widetilde{B}_{2}(t_0)=\min \Big (1,\frac{r}{\max (\alpha -\kappa ,0)}\Big )G\), and for each \(t_i,i=1,\ldots ,N\), we can write

$$\begin{aligned} \tilde{B}_{2}(t_i)= & {} G-V^E_2(t_i,e^{\kappa t_i}\tilde{B}_{2}(t_i))\nonumber \\{} & {} \quad -rG\frac{\Delta }{2}\sum _{w=0}^{i-1}\Bigg [e^{-r(t_i-z_w)}\Phi \Bigg (-d^-\Bigg (t_i-z_w,\frac{e^{\kappa t_i}\widetilde{B}_{2}(t_i)}{e^{\kappa z_w}\widetilde{B}_{2}(z_w)}\Bigg )\Bigg )\nonumber \\{} & {} \quad +e^{-r(t_i-\tilde{z}_w)}\Phi \Bigg (-d^-\Bigg (t_i-\tilde{z}_w,\frac{e^{\kappa t_i}\widetilde{B}_{2}(t_i)}{e^{\kappa \tilde{z}_w}\widetilde{B}_{2}(\tilde{z}_w)}\Bigg )\Bigg ) \Bigg ]\nonumber \\{} & {} \quad +(\alpha -\kappa )e^{\kappa t_i} \widetilde{B}_{2}(t_i)\frac{\Delta }{2}\sum _{w=0}^{i-1}\Bigg [e^{-\kappa z_w}e^{-\alpha (t_i-z_w)}\Phi \Bigg (-d^+\Bigg (t_i-z_w,\frac{e^{\kappa t_i}\widetilde{B}_{2}(t_i)}{e^{\kappa z_w}\widetilde{B}_{2}(z_w)}\Bigg )\Bigg )\nonumber \\{} & {} \quad +e^{-\kappa \tilde{z}_w}e^{-\alpha (t_i-\tilde{z}_w)}\Phi \Bigg (-d^+\Bigg (t_i-\tilde{z}_w,\frac{e^{\kappa t_i}\widetilde{B}_{2}(t_i)}{e^{\kappa \tilde{z}_w}\widetilde{B}_{2}(\tilde{z}_w)}\Bigg )\Bigg )\Bigg ]\nonumber \\{} & {} \quad +\Bigg (\frac{e^{\kappa t_i}\widetilde{B}_{2}(t_i)}{H}\Bigg )^{1-\lambda }\Bigg [ rG\frac{\Delta }{2}\sum _{w=0}^{i-1}\Bigg [e^{-r(t_i-z_w)}\Phi \Bigg (-d^-\Bigg (t_i-z_w,\frac{e^{-\kappa t_i}\widetilde{B}_{2}(t_i)^{-1}H^2}{e^{\kappa z_w}\widetilde{B}_{2}(z_w)}\Bigg )\Bigg )\nonumber \\{} & {} \quad +e^{-r(t_i-\tilde{z}_w)}\Phi \Bigg (-d^-\Bigg (t_i-\tilde{z}_w,\frac{e^{-\kappa t_i}\widetilde{B}_{2}(t_i)^{-1}H^2}{e^{\kappa \tilde{z}_w}\widetilde{B}_{2}(\tilde{z}_w)}\Bigg )\Bigg ) \Bigg ]\nonumber \\{} & {} \quad -(\alpha -\kappa )e^{-\kappa t_i} \widetilde{B}_{2}(t_i)^{-1}H^2\frac{\Delta }{2}\nonumber \\{} & {} \quad \times \sum _{w=0}^{i-1}\Bigg [e^{-\kappa z_w}e^{-\alpha (t_i-z_w)}\Phi \Bigg (-d^+\Bigg (t_i-z_w,\frac{e^{-\kappa t_i}\widetilde{B}_{2}(t_i)^{-1}H^2}{e^{\kappa z_w}\widetilde{B}_{2}(z_w)}\Bigg )\Bigg )\nonumber \\{} & {} \quad +e^{-\kappa \tilde{z}_w}e^{-\alpha (t_i-\tilde{z}_w)}\Phi \Bigg (-d^+\Bigg (t_i-\tilde{z}_w,\frac{e^{-\kappa t_i}\widetilde{B}_{2}(t_i)^{-1}H^2}{e^{\kappa \tilde{z}_w}\widetilde{B}_{2}(\tilde{z}_w)}\Bigg )\Bigg )\Bigg ]\Bigg ]. \end{aligned}$$
(A.1)

Considering simultaneously, for all i, the nonlinear Eq. (A.1), we obtain a nonlinear system of N equations in 3N unknowns. In order to avoid this problem, we approximate each \(\widetilde{B}_{2}(z_{w})\) and \(\widetilde{B}_{2}(\tilde{z}_{w})\) with the interpolated values,

$$\begin{aligned} \widetilde{B}_{2}(z_{w})\approx F_A\Big (t_{w},t_{w+1},\widetilde{B}_{2}(t_{w}),\widetilde{B}_{2}(t_{w+1}),z_{w}\Big ), \end{aligned}$$

and

$$\begin{aligned} \widetilde{B}_{2}(\tilde{z}_{w})\approx F_B\Big (t_{w},t_{w+1},\widetilde{B}_{2}(t_{w}),\widetilde{B}_{2}(t_{w+1}),\tilde{z}_w\Big ), \end{aligned}$$

where \(F_A\) and \(F_B\) are two functions indicating a linear interpolation, thus reducing the 3N unknowns to the N unknowns represented by the quantities \(\widetilde{B}_{2}(t_{i})\), with \(i=1,\ldots ,N\). Solving the arising system of N equations in N unknowns and considering the exact value of \(\widetilde{B}_{2}(t_0)\), we obtain the approximate solution

$$\begin{aligned} \left\{ \tilde{B}_{2}(t_0),\tilde{B}_{2}(t_1),\tilde{B}_{2}(t_2),\dots ,\tilde{B}_{2}(t_N)\right\} . \end{aligned}$$

As for Model 1, the provision \(\alpha \) making the contract fair may be evaluated applying the proposed algorithm and considering the additional equation

$$\begin{aligned} W=VA_{2}(0,W). \end{aligned}$$

A system of \(N+1\) equations in \(N+1\) unknowns is solved in order to find both the early exercise boundary and the provision.

1.2 Model 3

Suppose to consider Model 3, so that we consider Eq. (22). For the sake of simplicity, we define the quantity

$$\begin{aligned} V^E_3(\tau ,x)= & {} \varphi e^{-r\tau }\Phi \left( -d^-\left( \tau ,\frac{x}{\varphi }\right) \right) -xe^{-\alpha \tau }\Phi \left( -d^+\left( \tau ,\frac{x}{\varphi }\right) \right) \\{} & {} \quad +\frac{1}{\lambda }\Bigg [\varphi ^{1+\lambda }e^{-\alpha \tau }x\Phi \left( d^+(\tau ,\varphi x)\right) \\{} & {} \quad -\varphi e^{-r\tau }x^{1-\lambda }\Phi \left( \frac{\log (\varphi x)+(r-\alpha -\sigma ^2(-0.5+\lambda ))\tau }{\sigma \sqrt{\tau }}\right) \Bigg ]. \end{aligned}$$

We observe that \(\widetilde{b}_{3}(t_0)=\min \Big (1,\frac{r}{\max (\alpha -\kappa ,0)}\Big )\varphi \), and for each \(t_i,i=1,\ldots ,N\), using, as above, the same definition of \(z_w\) and \(\tilde{z}_w\), we can write

$$\begin{aligned} \tilde{b}_3(t_i)= & {} \varphi -V^E_3\left( t_i,e^{\kappa t_i}\widetilde{b}_{3}(t_i)\right) \nonumber \\{} & {} \quad -\varphi r\frac{\Delta }{2}\sum _{w=0}^{i-1}\Bigg [e^{-r(t_i-z_w)}\Phi \Bigg (-d^-\Bigg (t_i-z_w,\frac{e^{\kappa t_i}\widetilde{b}_{3}(t_i)}{e^{\kappa z_w}\widetilde{b}_{3}(z_w)}\Bigg )\Bigg )\nonumber \\{} & {} \quad +e^{-r(t_i-\tilde{z}_w)}\Phi \Bigg (-d^-\Bigg (t_i-\tilde{z}_w,\frac{e^{\kappa t_i}\widetilde{b}_{3}(t_i)}{e^{\kappa \tilde{z}_w}\widetilde{b}_{3}(\tilde{z}_w)}\Bigg )\Bigg )\nonumber \\{} & {} \quad +(\alpha -\kappa )e^{\kappa t_i}\widetilde{b}_{3}(t_i)\frac{\Delta }{2}\sum _{w=0}^{i-1}\Bigg [e^{-\kappa z_w}e^{-\alpha (t_i-z_w)}\Phi \Bigg (-d^+\Bigg (t_i-z_w,\frac{e^{\kappa t_i}\widetilde{b}_{3}(t_i)}{e^{\kappa z_w}\widetilde{b}_{3}(z_w)}\Bigg )\Bigg )\nonumber \\{} & {} \quad +e^{-\tilde{z}_w}e^{-\alpha (t_i-\tilde{z}_w)}\Phi \Bigg (-d^+\Bigg (t_i-\tilde{z}_w,\frac{e^{\kappa t_i}\widetilde{b}_{3}(t_i)}{e^{\kappa \tilde{z}_w}\widetilde{b}_{3}(\tilde{z}_w)}\Bigg )\Bigg )\Bigg ] +\frac{\varphi r}{\lambda }\Big (e^{\kappa t_i} \widetilde{b}_{3}(t_i)\Big )^{1-\lambda } \frac{\Delta }{2} \nonumber \\{} & {} \quad \times \sum _{w=0}^{i-1}\left[ e^{-r(t_i-z_w)}\Phi \left( \frac{\log \left( e^{\kappa t_i}\widetilde{b}_{3}(t_i)e^{\kappa z_w}\tilde{b}_3(z_w) \right) +(r-\alpha -\sigma ^2(-0.5+\lambda ))(t_i-z_w)}{\sigma \sqrt{t_i-z_w}}\right) \right. \nonumber \\{} & {} \quad \left. + e^{-r(t_i-\tilde{z}_w)}\Phi \left( \frac{\log \left( e^{\kappa t_i}\widetilde{b}_{3}(t_i)e^{\kappa \tilde{z}_w}\tilde{b}_3(\tilde{z}_w) \right) +(r-\alpha -\sigma ^2(-0.5+\lambda ))(t_i-\tilde{z}_w)}{\sigma \sqrt{t_i-\tilde{z}_w}}\right) \right] \nonumber \\{} & {} \quad -\left( \frac{1+\lambda }{\lambda }\right) \varphi re^{\kappa t_i}\widetilde{b}_{3}(t_i)\frac{\Delta }{2}\sum _{w=0}^{i-1}\Bigg [\widetilde{b}_{3}(z_w)^\lambda e^{-\alpha (t_i-z_w)}\Phi \Bigg (d^+\Bigg (t_i-z_w,e^{\kappa t_i}\widetilde{b}_{3}(t_i)e^{\kappa z_w}\widetilde{b}_{3}(z_w)\Bigg )\Bigg )\nonumber \\{} & {} \quad +\widetilde{b}_{3}(\tilde{z}_w)^\lambda e^{-\alpha (t_i-\tilde{z}_w)}\Phi \Bigg (d^+\Bigg (t_i-\tilde{z}_w,e^{\kappa t_i}\widetilde{b}_{3}(t_i)e^{\kappa \tilde{z}_w}\widetilde{b}_{3}(\tilde{z}_w)\Bigg )\Bigg )\Bigg ]\nonumber \\{} & {} \quad +(\alpha -\kappa )e^{\kappa t_i}\widetilde{b}_{3}(t_i)\frac{\Delta }{2}\sum _{w=0}^{i-1}\Bigg [\widetilde{b}_{3}(z_w)^{1+\lambda }e^{-\kappa z_w} e^{-\alpha (t_i-z_w)}\Phi \Bigg (d^+\Bigg (t_i-\tilde{z}_w,e^{\kappa t_i}\widetilde{b}_{3}(t_i)e^{\kappa z_w}\widetilde{b}_{3}(z_w)\Bigg )\Bigg )\nonumber \\{} & {} \quad +\widetilde{b}_{3}(\tilde{z}_w)^{1+\lambda }e^{-\kappa \tilde{z}_w} e^{-\alpha (t_i-\tilde{z}_w)}\Phi \Bigg (d^+\Bigg (t_i-\tilde{z}_w,e^{\kappa t_i}\widetilde{b}_{3}(t_i)e^{\kappa \tilde{z}_w}\widetilde{b}_{3}(\tilde{z}_w)\Bigg )\Bigg )\Bigg ]. \end{aligned}$$
(A.2)

Considering simultaneously, for all i, the nonlinear equation (A.2), we obtain a nonlinear system of N equations in 3N unknowns. In order to avoid this problem, we approximate each \(\widetilde{B}_{3}(z_{w})\) and \(\widetilde{B}_{3}(\tilde{z}_{w})\) with the interpolated values,

$$\begin{aligned} \widetilde{B}_{3}(z_{w})\approx F_A\Big (t_{w},t_{w+1},\widetilde{B}_{3}(t_{w}),\widetilde{B}_{3}(t_{w+1}),z_{w}\Big ), \end{aligned}$$

and

$$\begin{aligned} \widetilde{B}_{3}(\tilde{z}_{w})\approx F_B\Big (t_{w},t_{w+1},\widetilde{B}_{3}(t_{w}),\widetilde{B}_{3}(t_{w+1}),\tilde{z}_w\Big ), \end{aligned}$$

where \(F_A\) and \(F_B\) are two functions indicating a linear interpolation, thus reducing the 3N unknowns to the N unknowns represented by the quantities \(\widetilde{B}_{3}(t_{i})\), with \(i=1,\ldots ,N\). Solving the arising system of N equations in N unknowns and considering the exact value of \(\widetilde{B}_{3}(t_0)\), we obtain the approximate solution

$$\begin{aligned} \left\{ \tilde{B}_{3}(t_0),\tilde{B}_{3}(t_1),\tilde{B}_{3}(t_2),\dots ,\tilde{B}_{3}(t_N)\right\} . \end{aligned}$$

The provision \(\alpha \) making the contract fair may be evaluated applying the proposed algorithm and considering the additional equation

$$\begin{aligned} W=VA_{3}(0,W). \end{aligned}$$

A system of \(N+1\) equations in \(N+1\) unknowns is solved in order to find both the early exercise boundary and the provision. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martire, A.L., Russo, E. & Staino, A. Surrender and path-dependent guarantees in variable annuities: integral equation solutions and benchmark methods. Decisions Econ Finan 46, 177–220 (2023). https://doi.org/10.1007/s10203-022-00383-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10203-022-00383-w

Keywords

Navigation