Skip to main content
Log in

On parameter estimation of Heston’s stochastic volatility model: a polynomial filtering method

  • Published:
Decisions in Economics and Finance Aims and scope Submit manuscript

Abstract

In this paper, we investigate the problem of estimating the volatility from the underlying asset price for discrete-time observations. This topic has attracted much research interest due to the key role of the volatility in finance. In this paper, we consider the Heston stochastic volatility model with jumps and we develop a new polynomial filtering method for the estimation of the volatility. The method relies on a linear filter which uses a polynomial state-space formulation of the discrete version of the continuous-time model. We demonstrate that a higher-order polynomial filtering method can be efficiently applied in the context of stochastic volatility models. Then, we compare our approach with some, well-established, techniques in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. This is a common practice in the calibration of stochastic volatility models.

References

  • Ait-Sahalia, Y., Kimmel, R.: Maximum likelihood estimation of stochastic volatility, Models. J. Financ. Econ. 83, 413–452 (2007)

    Google Scholar 

  • Ait-Sahalia, Y., Kimmel, R.: Estimating affine multifactor term structure models using closed-form likelihood expansions. J. Financ. Econ. 98, 113–144 (2010)

    Google Scholar 

  • Anderson, B.D.O., Moore, J.B.: Optim. Filter. Prentice Halls, Englewood Cliffs (1979)

    Google Scholar 

  • Arulampalam, S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50, 174–188 (2002)

    Google Scholar 

  • Atiya, A.F., Wall, S.: An analytic approximation of the likelihood function for the Heston model volatility estimation problem. Quant. Finance 9, 289–296 (2009)

    Google Scholar 

  • Bakshi, G., Cao, C., Chen, Z.: Empirical performance of alternative option pricing models. J Finance 52, 2003–2049 (1997)

    Google Scholar 

  • Barndorff-Nielsen, O.: Processes of normal inverse Gaussian type. Finance Stoch. 1, 41–68 (1998)

    Google Scholar 

  • Bates, D.S.: Jump and stochastic volatility: exchange rate processes implicit in Deutsche mark options. Rev. Financ. Stud. 9, 69–107 (1996)

    Google Scholar 

  • Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  • Black, F., Scholes, M.: The pricing of options and corporate Liabilities. J. Polit. Econ. 81, 637–59 (1973)

    Google Scholar 

  • Black, F.: Studies of stock market volatility changes. In: Proceedings of the American Statistical Association, Business and Economic Statistics Section, pp. 177–181 (1976)

  • Bouchaud, J.P., Potters, M.: Theory of Financial Risks. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  • Carr, P., Wu, L.: The finite moment log stable process and option pricing. J. Finance 58, 753–777 (2003)

    Google Scholar 

  • Carr, P., Chang, E.C., Madan, D.B.: The variance gamma process and option pricing. Eur Finance Rev. 2, 79–105 (1998)

    Google Scholar 

  • Carravetta, F., Germani, A., Raimondi, M.: Polynomial filtering for linear discrete-time non-Gaussian systems. SIAM J. Control Optim. 34, 1666–1690 (1996)

    Google Scholar 

  • Carravetta, F., Germani, A., Raimondi, M.: Polynomial filtering of discrete-time stochastic linear systems with multiplicative state noise. IEEE Trans. Automat. Control 42, 1106–1126 (1997)

    Google Scholar 

  • Carravetta, F., Germani, A., Shuakayev, M.K.: A new suboptimal approach to the filtering problem for bilinear stochastic differential systems. SIAM J. Control Optim. 38, 1171–1203 (2000)

    Google Scholar 

  • Chernov, M., Gallant, R., Ghysels, E., Tauchen, G.: Alternative models for stock price dynamics. J. Econom. 116, 225–257 (2003)

    Google Scholar 

  • Christofersen, P., Jacobs, K., Mimouni, K.: Volatility dynamics for the S&P500: evidence from realized volatility, daily returns and option prices. Rev. Financ. Stud. 23, 3141–3189 (2010)

    Google Scholar 

  • Cox, J., Ingersoll, J., Ross, S.: A theory of the term structure of interest rates. Econometrica 53, 385–408 (1985)

    Google Scholar 

  • De Santis, A., Germani, A., Raimondi, M.: Optimal quadratic filtering of linear discrete time non-Gaussian systems. IEEE Trans. Autom. Control. 40, 1274–1278 (1995)

    Google Scholar 

  • Dragulescu, A.A., Yakovenko, V.M.: Probability distribution of returns in the Heston model with stochastic volatility. Quant. Finance 2, 443–453 (2002)

    Google Scholar 

  • Duffie, D., Filipovic, D., Schachermayer, W.: Affine processes and applications in finance. Ann. Appl. Probab. 13, 984–1053 (2003)

    Google Scholar 

  • Duffie, D., Pan, J., Singleton, K.: Transform analysis and asset pricing for affine jump-diffusions. Econometrica 68, 1343–1376 (2000)

    Google Scholar 

  • Eberlein, E., Keller, U., Prause, K.: New insights into smile, mispricing and value at risk: the hyperbolic model. J. Bus. 71, 371–405 (1998)

    Google Scholar 

  • Eraker, B.: MCMC analysis of diffusion models with application to finance. J. Bus. Econ. Stat. 19, 177–191 (2001)

    Google Scholar 

  • Eraker, B.: Do stock prices and volatility jump? evidence from spot and option prices. J. Finance 59, 1367–1403 (2004)

    Google Scholar 

  • Eraker, B., Johannes, M., Polson, N.G.: The impact of jumps in equity index volatility and returns. J. Finance 58, 1269–1300 (2003)

    Google Scholar 

  • Fasano, A., Germani, A., Monteriè, A.: Reduced-order quadratic Kalman-like filtering of non-Gaussian systems. IEEE TAC 58, 1744–1756 (2013)

    Google Scholar 

  • Harvey, A.C.: Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  • Haykin, S.: Kalman Filters. In: Haykin, S. (ed.) Kalman Filtering and Neural Networks. Wiley, New York (2001)

    Google Scholar 

  • Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 13, 585–625 (1993)

    Google Scholar 

  • Hirsa, A., Madan, D.B.: Pricing American options under variance gamma. J. Comput. Finance 7(2), 63–80 (2004)

    Google Scholar 

  • Huang, J., Wu, L.: Specification analysis of option pricing models based on time-changed Lévy processes. J. Finance 59, 1405–1439 (2003)

    Google Scholar 

  • Jacquier, E., Polson, N.G., Rossi, P.: Bayesian analysis of stochastic volatility models with leverage effect and fat tails. J. Econom. 122, 185–212 (2004)

    Google Scholar 

  • Javaheri, A., Lautier, D., Galli, A.: Filtering in finance. Wilmott Mag. 5, 67–83 (2003)

    Google Scholar 

  • Javaheri, A.: Inside Volatility Arbitrage, the Secrets of Skewness. Wiley, Hoboken (2005)

    Google Scholar 

  • Johannes, M.S., Polson, N.G., Stroud, J.R.: Optimal filtering of jump diffusions: extracting latent states from asset prices. Rev. Financ. Stud. 22, 2759–2799 (2005)

    Google Scholar 

  • Li, H., Wells, M., Yu, L.: A Bayesian analysis of return dynamics with Lévy jumps. Rev. Financ. Stud. 21, 2345–2378 (2008)

    Google Scholar 

  • Liptser, R.S., Shiryaev, A.N.: Statistics of Random Processes—I. General Theory. Springer, Berlin (2013)

    Google Scholar 

  • Madan, D.B., Carr, P., Chang, E.C.: The variance gamma process and option pricing. Eur. Finance Rev. 2, 79–105 (1998)

    Google Scholar 

  • Madan, D.B., Milne, F.: Option pricing with variance gamma martingale components. Math. Finance 1(4), 39–55 (1991)

    Google Scholar 

  • Madan, D.B., Seneta, E.: The variance gamma model for share market return. J. Bus. 63(4), 511–524 (1990)

    Google Scholar 

  • Stroud, J.R., Polson, N.G., Miiller, P.: Practical filtering for stochastic volatility models. In: Harvey, A., Koopman, S., Shephard, N. (eds.) State Space and Unobserved Components Models, pp. 236–247. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  • Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, vol. 293. Springer, Berlin (1991)

    Google Scholar 

  • Watanabe, T.: Non-linear filtering approach to stochastic volatility models with an application to daily stock returns. J. Appl. Econom. 14, 101–121 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Papi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Kalman Filter The state-space form of a dynamical system is defined by the following pair of equations:

$$\begin{aligned} X_{t+1}= & {} A_t X_t+B_t+E_t \end{aligned}$$
(6.1)
$$\begin{aligned} Y_{t}= & {} C_t X_t+D_t+H_t \end{aligned}$$
(6.2)

where \(X_t\) and \(Y_t\) are vectors in \(\mathbb {R}^p\) representing a discrete random variables on the same probability space \((\Omega ,\mathcal{F},\mathbb {P})\), endowed with a discrete filtration \(\mathcal{F}_0,\;\mathcal{F}_1,\;,\ldots ,\mathcal{F}_N\). In general, the elements of \(X_t\) are not observable, whereas the elements of \(Y_t\) are observable. \(E_t\) and \(H_t\) are \(\mathcal{F}_{t+1}\)-adapted, square integrale, white noise processes. All vectors \(B_t,\;D_t,\;E_t,\;H_t\in \mathbb {R}^p\) and matrices \(A_t,\;C_t\in \mathbb {R}^{p\times p}\) can vary with t, but apart from \(X_t\) and \(Y_t\), that they only vary in a deterministic manner.

Furthermore, let denote \(Q_{i,j,t}=\mathbb {E}\left[ E_{i,t}\cdot E_{j,t}\right] \) and \(R_{i,j,t}=\mathbb {E}\left[ H_{i,t}\cdot H_{j,t}\right] \), for any \(i,\,j=1,2,\ldots ,p\), and let \(\mathcal{Y}_s:=[Y_0,\,Y_1,\ldots ,Y_{s}]\in \mathbb {R}^{p\times {s+1}}\), for \(s=0,\ldots ,N\). By \({\hat{X}}_{t|s}\), we shall mean the best linear minimum variance estimate of \(X_t\), given \(\mathcal{Y}_s\). That is, it holds

$$\begin{aligned} \mathbb {E}\left[ |{\hat{X}}_{t|s}-X_{t}|^2\right] \le \mathbb {E}\left[ |L\mathcal{Y}_{s}-X_{t}|^2\right] , \end{aligned}$$
(6.3)

for all matrices \(L\in \mathbb {R}^{p\times (p\times p)}\).

We also define the error matrix

$$\begin{aligned} P_{t|s}=\mathbb {E}\left[ (X_t-{\hat{X}}_{t|s})\cdot (X_t-{\hat{X}}_{t|s})^{\top }\right] \in \mathbb {R}^{p\times p}. \end{aligned}$$
(6.4)

When \(s = t\), the estimate is called a filtered estimate and is denoted as \({\hat{X}}_t\), when \(t > s\), the estimate is called a predicted estimate, and for \(t<s\), the estimate is called a smoothed estimate. The discrete Kalman filter (1960) \({\hat{X}}_t\) may be generated recursively by the following relations:

$$\begin{aligned} \text{(predicted } \text{ state) }&{\hat{X}}_{t+1|t}=A_t {\hat{X}}_{t|t}+B_t, \nonumber \\ \text{(predicted } \text{ state } \text{ error } \text{ matrix) }&P_{t+1|t}=A_t P_{t|t} A_t^{\top }+Q_t, \nonumber \\ \text{(predicted } \text{ observation) }&{\hat{Y}}_{t+1|t} = C_{t+1} {\hat{X}}_{t+1|t}+D_{t+1}, \nonumber \\ \text{(predicted } \text{ obs } \text{ error) }&r_{t+1} = Y_{t+1}- {\hat{Y}}_{t+1|t}, \nonumber \\ \text{(predicted } \text{ obs } \text{ error } \text{ matrix) }&\Sigma _{t+1} = C_{t+1} P_{t+1|t}C^{\top }_{t+1}+R_{t+1} \nonumber \\ \text{(Kalman } \text{ gain) }&K_{t+1} = P_{t+1|t}C^{\top }_{t+1}\Sigma _{t+1}^{-1}, \nonumber \\ \text{(next } \text{ filtered } \text{ state) }&{\hat{X}}_{t+1|t+1}={\hat{X}}_{t+1|t}+K_{t+1}r_{t+1}, \nonumber \\ \text{(next } \text{ filtered } \text{ state } \text{ error } \text{ matrix) }&P_{t+1|t+1}=\left[ I-K_{t+1}C_{t+1}\right] P_{t+1|t}.\nonumber \\ \end{aligned}$$
(6.5)

If the initial state \(X_0\) and the innovations \(E_t\), \(H_t\) are multivariate Gaussian, then the forecast \({\hat{X}}_{t|s}\) is the minimum variance estimator.

To run the Kalman filter, we begin with the pair \({\hat{X}}_{0|0}\), \(P_{0|0}\). A difficulty with the Kalman filter is the determination of these initial conditions. In many real applications, the distribution for \(X_0\) is unknown. Several approaches are possible. For example, one may treat \(X_0\) as a fixed vector, \(P_{0|0} = 0\), and estimate its components by treating them as extra parameters in the model.Footnote 1 The details are more involved. A general rule is that for long time series, the initial state conditions will have little impact.

If the initial state \(X_0\) and the innovations \(E_t\), \(H_t\) are multivariate Gaussian, then the distribution of \(Y_t\) conditional on the set \(\mathcal{Y}_{t-1}\) is also Gaussian \(N({\hat{Y}}_{t|t-1},\Sigma _t)\). Now let us suppose that the state-space vectors and matrices depend on certain unknown parameters, defined by a vector \(\Theta \). We may form the log-likelihood function by taking the joint probability density function:

$$\begin{aligned} \log \ell (Y;\Theta )=-\frac{Np}{2}\log (2\pi )-\frac{1}{2}\sum _{t=1}^N \left[ \log (\det \Sigma _t)+r_t^{\top }\Sigma ^{-1} r_t^{\top }\right] . \end{aligned}$$
(6.6)

By maximizing \(\log (\ell (Y; \Theta ))\) with respect to \(\Theta \) for a particular realization of \(Y=\{Y_0,Y_1,\ldots ,Y_N\}\), we obtain the maximum likelihood estimates for the parameters. Moreover, \(\log (\ell (Y; \Theta ))\) may be computed via the Kalman filter, since the algorithm naturally computes both \(r_t\) and \(\Sigma _t\).

Proof of Theorem 3.1

Let \(\mathcal{F}_T^R=\sigma \left( R_s:\;s\le T\right) \). Filtrations \(\mathcal{F}_T^N=\sigma \Big (R_{t\Delta }: t=0,,1,\ldots N\Big )\), \(\Delta =T/N\), are increasing with N, and they are certainly bounded by \(\mathcal{F}_T^R\):

$$\begin{aligned} \mathcal{F}_T^N\subset \mathcal{F}_T^{N+1}\subset \cdots \subset \mathcal{F}_T^R. \end{aligned}$$
(6.7)

Let \(\mathcal{F}_T^\star \) be the minimal \(\sigma \)-algebra generated by \(\mathcal{F}_T^N\), for all \(N\ge 1\). Since \(\mathcal{F}_T^\star =\mathcal{F}_T^R\), it suffices to apply Corollary 2.4 (page 59) in Revuz and Yor (1991), to deduce that

$$\begin{aligned} \lim _{N\rightarrow \infty }\mathbb {E}\left[ g(V_T)\Big | \,\mathcal{F}_T^{N} \right] = \mathbb {E}\left[ g(V_T)\Big |\,\mathcal{F}_T^{\star }\right] =\mathbb {E}\left[ g(V_T)\Big |\,\mathcal{F}_T^{R}\right] , \end{aligned}$$
(6.8)

\(\mathbb {P}\)-a.s., for any bounded continuous function g. In order to prove that the conditional expectation in the right-hand side of (6.8) coincides with \(g(V_T)\), we show that V is \(\mathcal{F}^{R}\)-adapted. In fact, the quadratic variation of R is given by

$$\begin{aligned}{}[R]_t=\int _0^t V_s ds+\sum _{\xi \le t}\left( \Delta R_\xi \right) ^2, \end{aligned}$$
(6.9)

and it holds \([R]_t=R_t^2-2\int _0^t R_{\xi ^-} dR_\xi \); hence, [R] is \(\mathcal{F}^R\)-adapted. From (6.9), we argue that the process \(\int _0^{(\cdot )} V_s ds\) is \(\mathcal{F}^{R}\)-adapted, implying that V is \(\mathcal{F}^{R}\)-adapted. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cacace, F., Germani, A. & Papi, M. On parameter estimation of Heston’s stochastic volatility model: a polynomial filtering method. Decisions Econ Finan 42, 503–525 (2019). https://doi.org/10.1007/s10203-019-00251-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10203-019-00251-0

Keywords

Navigation