Skip to main content
Log in

Calibration of local volatility model with stochastic interest rates by efficient numerical PDE methods

  • Published:
Decisions in Economics and Finance Aims and scope Submit manuscript

Abstract

Long-maturity options or a wide class of hybrid products are evaluated using a local volatility-type modelling for the asset price S(t) with a stochastic interest rate r(t). The calibration of the local volatility function is challenging and time-consuming because of the multi-dimensional nature of the problem. A key requirement of any equity hybrid derivatives pricing model is the ability to rapidly and accurately calibrate to vanilla option prices. In this paper, we develop a calibration technique based on a partial differential equation (PDE) approach which allows an accurate calibration and provides an efficient implementation algorithm. The essential idea is based on solving the derived forward equation satisfied by \(P(t, S, r) \mathcal {Z}(t, S, r)\), where P(tSr) represents the risk-neutral probability density of (S(t), r(t)) and \(\mathcal {Z}(t, S, r)\) the projection of the stochastic discounting factor in the state variables (S(t), r(t)). The solution provides effective and sufficient information for the calibration and pricing. The PDE solver is constructed by using ADI (alternative direction implicit) method based on an extension of the Peaceman–Rachford scheme. Furthermore, an efficient algorithm to compute all the corrective terms in the local volatility function due to the stochastic interest rates is proposed by using the PDE solutions and grid points. It reduces by one order the computations costs and then allows to speed up significantly the calibration procedure. Different numerical experiments are examined and compared to demonstrate the results of our theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Andreasen, J., Andersen, L.: Volatility skews and extensions of the libor market model. Appl. Math. Finance 1, 1 (2000)

    Article  Google Scholar 

  • Atlan, M.: Localiszing volatilies. Working paper, Laboratoire de Probabilites Universite Pierre et Marie Currie (2006)

  • Avellaneda, M., Laurence, P.: Quantitative Modeling of Derivative Securities, from Theory to Practice. CRC, Boca Raton (2000)

    Google Scholar 

  • Benhamou, E., Gruz, A., Rivoira, A.: Stochastic Interest Rates for Local Volatility Hybrids Models. Wilmott, Letchworth (2008)

    Book  Google Scholar 

  • Benhamou, E., Gobet, E., Miri, M.: Smart expansion and fast calibration for jump diffusion. Finance Stoch. 13(4), 563–589 (2009)

    Article  Google Scholar 

  • Benhamou, E., Gobet, E., Miri, M.: Analytical formulas for local volatility model with stochastic rates. Quant. Finance 12, 185–198 (2012)

    Article  Google Scholar 

  • Bompis, R., Hok, J.: Forward implied volatility expansion in time-dependent local volatility models. ESAIM Proc. 45, 88–97 (2014)

    Article  Google Scholar 

  • Brigo, D., Mercurio, F.: Interest Rate Models-Theory and Practice With Smile, Inflation and Credit. Springer, Berlin (2006)

  • Clark, I.J.: Foreign Exchange Option Pricing: A Practitioner’s Guide. Wiley, Hoboken (2011)

    Google Scholar 

  • Dang, D.M., Christara, C., Jackson, K.R., Lakhany, A.: A PDE pricing framework for cross-currency interest rate derivatives. AIP Conf. Proc. 1281(1), 2371–2380 (2010)

    Google Scholar 

  • Deelstra, G., Rayee, G.: Local volatility pricing models for long-dated FX derivatives. Appl. Math. Finance 20(4), 380–402 (2012)

    Article  Google Scholar 

  • Derman, E., Kani, I.: Stochastic implied trees: arbitrage pricing with stochastic term and strike structure of volatility. Int. J Theor. Appl. Finance 01, 61–110 (1998)

    Article  Google Scholar 

  • Dupire, B.: Pricing with a smile. Risk 7(1), 18–20 (1994)

    Google Scholar 

  • Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer, Berlin (2003)

    Book  Google Scholar 

  • Gobet, E., Hok, J.: Expansion formulas for best-of option on equity and inflation. Int. J. Theor. Appl. Finance 17, 1450010 (2014)

    Article  Google Scholar 

  • Guyon, J., Labordere, P.H.: The smile calibration problem solved. Working paper (2011)

  • Haddou, Z. A.: Stochastic Local Volatility and High Performance Computing. Master thesis (2012)

  • Haowen, F.: European option pricing formula under stochastic interest rate. Prog. Appl. Math. 4(1), 14–21 (2012)

    Google Scholar 

  • Hok, J., Papapantoleon, A., Ngare, P.: Expansion formulas for European quanto options in a local volatility FX-LIBOR model. Int. J. Theor. Appl. Finance 1(2), 1850017 (2018)

    Article  Google Scholar 

  • Hull, J., White, A.: One factor interest rate models and the valuation of interest rate derivative securities. J. Financ. Quant. Anal. 28, 235–254 (1993)

    Article  Google Scholar 

  • in’t Hout, K.J., Maarten, W.: Convergence of the modified Craig-Sneyd scheme for two-dimensional convection-diffusion equations with mixed derivative term. J. Comput. Appl. Math. 296, 170–180 (2016)

    Article  Google Scholar 

  • Itkin, A.: Modeling stochastic skew of FX options using SLV models with stochastic spot/vol correlation and correlated jumps. Appl. Math. Finance 2, 485–519 (2017)

    Article  Google Scholar 

  • Jackel, P.: Hyperbolic local volatility. Working paper (2010)

  • Joshi, M., Ranasinghe, N.: Local volatility under stochastic interest rates using mixture models. Working paper, SSRN 2780072 (2016)

  • Kim, Y.J.: Option pricing under stochastic interest rates: an empirical investigation. Asia Pac. Financ. Mark. 9, 23–44 (2002)

    Article  Google Scholar 

  • Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)

    Book  Google Scholar 

  • Lamberton, D., Lapeyre, B.: Introduction au calcul stochastique applique a la finance, 3rd edn. Ellipses, Paris (2012)

    Google Scholar 

  • Maarten, W., in’t Hout, K.J.: An adjoint method for the exact calibration of stochastic local volatility models. J. Comput. Sci. 24, 182–194 (2017)

    Google Scholar 

  • Musiela, M., Rutkowski, M.: Martingale Methods in Financial Modelling, 2nd edn. Springer, Berlin (2005)

    Book  Google Scholar 

  • Oksendal, B.K.: Stochastic Differential Equations: An Introduction with Applications. Springer, Berlin (2003)

    Book  Google Scholar 

  • Overhaus, M., Bermudez, A., Buehler, H., Ferraris, A., Jordinson, C., Lamnouar, A.: Equity Hybrid Derivatives. Wiley, Hoboken (2007)

    Google Scholar 

  • Peaceman Jr., D.W., Rachford, H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3, 28–41 (1955)

    Article  Google Scholar 

  • Piterbarg, V.: Stochastic volatility model with time dependent skew. Appl. Math. Finance 12, 147–185 (2005a)

    Article  Google Scholar 

  • Piterbarg, V.: Time to smile. Risk. 71–75 (2005b)

  • Piterbarg, V.: Smiling hybrids. Risk Mag. 19, 66–71 (2006)

    Google Scholar 

  • Ren, Y., Madan, D., Qian, M.Q.: Calibrating and pricing with embedded local volatility models. Risk 20, 138–143 (2007)

    Google Scholar 

  • Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer, Berlin (2001)

    Google Scholar 

  • Rubinstein, M.: Implied binomial trees. J. Finance 49, 771–818 (1994)

    Article  Google Scholar 

  • Saichev, A., Woyczynski, W.: Distributions in the Physical and Engineering Sciences, Linear and Nonlinear Dynamics in Continuous Media, vol. 2. Birkhäuser, Basel (2013)

    Google Scholar 

  • Sepp, A.: Stochastic Local Volatility Models: Theory and Implementation. Working paper (2010)

  • Shreve, S.: Stochastic Calculus for Finance II. Springer, Berlin (2004)

    Book  Google Scholar 

  • Tian, Y., Zhu, Z., Lee, G., Klebaner, F., Hamza, K.: Calibrating and pricing with a stochastic-local volatility model. J Deriv. 22(3), 21–39 (2015)

    Article  Google Scholar 

  • Windcliff, H., Forsyth, P.A., Vetzal, K.R.: Analysis of the stability of the linear boundary condition for the Black–Scholes equation. J. Comput. Finance 8, 65–92 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Kevin Parrott from the University of Greenwich and the participants at QuantMinds International conference 2018 for their fruitful comments. The authors also thank the referees and the associate editor for their constructive feedbacks and remarks to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Hok.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

7 Appendix

7 Appendix

For the proof of Corollary 2, we provide the following useful lemma

Lemma 1

Using the definitions in Proposition 3 and Corollary 2, we have

$$\begin{aligned} S_0n(d_1) = K {\textit{Z}C}(0, T) n(d_2) \end{aligned}$$
(88)

Proof

$$\begin{aligned} d_2^2 - d_1^2&= (d_2-d_1)(d_2+d_1) \end{aligned}$$
(89)
$$\begin{aligned}&= -\sqrt{g(T)} (d_2+d_1) \end{aligned}$$
(90)
$$\begin{aligned}&= -\sqrt{g(T)} \left( 2d_1 - \sqrt{g(T)} \right) \end{aligned}$$
(91)
$$\begin{aligned}&= -2 \left( \log \left( \frac{S_0}{K} \right) - \log {\textit{Z}C}(0,T) \right) \end{aligned}$$
(92)
$$\begin{aligned} \log \left( \frac{n(d_1)}{n(d_2)} \right)&= \log \left( \frac{K\log {\textit{Z}C}(0,T)}{S_0} \right)&\end{aligned}$$
(93)

From the last expression, we deduce directly (88). \(\square \)

For expression (67), we write

$$\begin{aligned} C_T(T, K)&= S_0 n(d_1) d_{1, T} - K \left[ {\textit{Z}C}_\mathrm{T}(0,T) N(d_2) + {\textit{Z}C}(0,T) n(d_2) d_{2,\mathrm{T}} \right] \end{aligned}$$
(94)
$$\begin{aligned}&= S_0 n(d_1)( d_{1, \mathrm{T}}-d_{2, \mathrm{T}} ) - K {\textit{Z}C}_T(0,T) N(d_2) \end{aligned}$$
(95)
$$\begin{aligned}&= \frac{S_0 n(d_1)}{2} \frac{{\hat{\sigma }}^2(T)}{\sqrt{g(T)}} + K {\textit{Z}C}(0, T)f(0, T) N(d_2) \end{aligned}$$
(96)

where we have used (88) in the second equality, \(d_{1, \mathrm{T}}-d_{2, \mathrm{T}} = \frac{1}{2}\frac{{\hat{\sigma }}^2(T)}{\sqrt{g(T)}}\) and \({\textit{Z}C}_T(0,T) = -{\textit{Z}C}(0,T) f(0,T)\) to obtain the third expression.

$$\begin{aligned} C_\mathrm{K}(T, K) = S_0 n(d_1) d_{1, \mathrm{K}} - {\textit{Z}C}(0,T) \left[ N(d_2) + K n(d_2) d_{2, \mathrm{K}} \right] \end{aligned}$$
(97)

Using \(d_{1, K} = d_{2, \mathrm{K}}\) and result of lemma (88), we get expression (68). Finally, we obtain formula (69) by deriving (68) w.r.t. K and using \(d_{1, \mathrm{K}} = -\frac{1}{K \sqrt{g(T)}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hok, J., Tan, SH. Calibration of local volatility model with stochastic interest rates by efficient numerical PDE methods. Decisions Econ Finan 42, 609–637 (2019). https://doi.org/10.1007/s10203-019-00232-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10203-019-00232-3

Keywords

JEL Classification

Navigation