Skip to main content
Log in

Temporal beta diversity increases with environmental variability in zooplankton floodplain communities

  • Research paper
  • Published:
Limnology Aims and scope Submit manuscript

Abstract

Temporal changes in community structure (temporal beta diversity) are expected to be driven by temporal environmental variation as different conditions may select for different sets of species. Here, we tested this hypothesis using a zooplankton dataset from the Araguaia River floodplain, Central Brazil. Data on zooplankton abundance and environmental variables (pH, water temperature, conductivity, turbidity, transparency, depth and concentrations of total phosphorus, total nitrogen, and chlorophyll-a) were collected at 30 sites in January (high water period) and July 2006 (low water period). For each site, we used the Bray–Curtis dissimilarity coefficient to measure temporal beta diversity (between January and July 2006), while the standardized Euclidean distance was used to calculate the temporal environmental variability. Then, we tested the hypothesis that temporal beta diversity would be higher in habitats that underwent larger variation in environmental conditions using a Pearson correlation analysis. We found a positive correlation between temporal beta diversity and environmental variability (r = 0.46; P = 0.043). Furthermore, we found that temporal beta diversity was mainly driven by an increase in zooplankton abundance between high and low water periods. Our results add to the increasing evidence that hydrological variation is key to understanding zooplankton community dynamics in floodplains. We suggest that future studies should search for correlates of temporal beta diversity (such as environmental variability) in other highly seasonal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Raw data is available upon request.

References

  • Agostinho AA, Thomaz SM, Gomes LC (2004) Threats for biodiversity in the floodplain of the Upper Paraná River: effects of hydrological regulation by dams. Ecohydrol Hydrobiol 4:255–268

    Google Scholar 

  • Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sanders NJ, Cornell HV, Comita LS, Davies KF, Harrison SP, Kraft NJB, Stegen JC, Swenson NG (2011) Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28. https://doi.org/10.1111/j.1461-0248.2010.01552.x

    Article  PubMed  Google Scholar 

  • APHA WPCF (2005) AWWA standard methods for the examination of water and wastewater. American Public Health Association (APHA), Washington

    Google Scholar 

  • Astorga A, Death R, Death F, Paavola R, Chakraborty M, Muotka T (2014) Habitat heterogeneity drives the geographical distribution of beta diversity: the case of New Zealand stream invertebrates. Ecol Evol 4:2693–2702. https://doi.org/10.1002/ece3.1124

    Article  PubMed  PubMed Central  Google Scholar 

  • Baranyi C, Hein T, Holarek C, Keckeis S, Schiemer F (2002) Zooplankton biomass and community structure in a Danube River floodplain system: effects of hydrology. Freshw Biol 47:473–482. https://doi.org/10.1046/j.1365-2427.2002.00822.x

    Article  Google Scholar 

  • Bini LM, Landeiro VL, Padial AA, Siqueira T, Heino J (2014) Nutrient enrichment is related to two facets of beta diversity for stream invertebrates across the United States. Ecology 95:1569–1578

    Article  PubMed  Google Scholar 

  • Bozelli RL, Thomaz SM, Padial AA, Lopes PM, Bini LM (2015) Floods decrease zooplankton beta diversity and environmental heterogeneity in an Amazonian floodplain system. Hydrobiologia 753:233–241

    Article  CAS  Google Scholar 

  • Brown BL, Sokol ER, Skelton J, Tornwall B (2017) Making sense of metacommunities: dispelling the mythology of a metacommunity typology. Oecologia 183:643–652

    Article  PubMed  Google Scholar 

  • Carvalho P, Bini L, Thomaz S, Oliveira L, Robertson B, Tavechio W, Darwisch AJ (2001) Comparative limnology of South American floodplain lakes and lagoons. Acta Scientiarum 23:265–273

    Google Scholar 

  • Ceschin F, Bini LM, Padial AA (2018) Correlates of fish and aquatic macrophyte beta diversity in the Upper Paraná River floodplain. Hydrobiologia 805:377–389. https://doi.org/10.1007/s10750-017-3325-x

    Article  CAS  Google Scholar 

  • Clifford P, Richardson S, Hemon D (1989) Assessing the significance of the correlation between two spatial processes. Biometrics 45:123–134

    Article  CAS  PubMed  Google Scholar 

  • Cook SC, Housley L, Back JA, King RS (2018) Freshwater eutrophication drives sharp reductions in temporal beta diversity. Ecology 99:47–56. https://doi.org/10.1002/ecy.2069

    Article  PubMed  Google Scholar 

  • de Braghin LSM, Dias JD, Simões NR, Bonecker CC (2021) Food availability, depth, and turbidity drive zooplankton functional diversity over time in a Neotropical floodplain. Aquat Sci 83:1–11. https://doi.org/10.1007/s00027-020-00763-7

    Article  Google Scholar 

  • De Paggi SBJ, Paggi JC (2008) Hydrological connectivity as a shaping force in the zooplankton community of two lakes in the Paraná River floodplain. Int Rev Hydrobiol 93:659–678

    Article  Google Scholar 

  • Dickerson KD, Medley KA, Havel JE (2010) Spatial variation in zooplankton community structure is related to hydrologic flow units in the Missouri River, USA. River Res Appl 26:605–618

    Article  Google Scholar 

  • Dornelas M, Magurran AE, Buckland ST, Chao A, Chazdon RL, Colwell RK, Curtis T, Gaston KJ, Gotelli NJ, Kosnik MA, McGill B, McCune JL, Morlon H, Mumby PJ, Øvreås L, Studeny A, Vellend M (2013) Quantifying temporal change in biodiversity: challenges and opportunities. Proc R Soc B Biol Sci 280:20121931

    Article  Google Scholar 

  • Dray S, Bauman D, Blanchet G, Borcard D, Clappe S, Guénard G, Jombart T, Larocque G, Legendre P, Madi N, Wagner HH (2022) adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.3–20

  • Dutilleul P, Clifford P, Richardson S, Hemon D (1993) Modifying the t test for assessing the correlation between two spatial processes. Biometrics 49:305–314

    Article  Google Scholar 

  • Golterman HL, Clymo RS, Ohnstad MAM (1978) Methods for physical and chemical analysis of freshwaters. Blackwell Scientific, Oxford

    Google Scholar 

  • Gomes DJC, Nascimento MMM, Pereira FM, de Dias GFM, Meireles RR, de Souza LGN, Picanço ARS, Ribeiro HMC (2022) Flow variability in the Araguaia River Hydrographic Basin influenced by precipitation in extreme years and deforestation. Rev Bras De Ciênc Ambient 57:451–466

    Article  Google Scholar 

  • Havel JE, Medley KA, Dickerson KD, Angradi TR, Bolgrien DW, Bukaveckas PA, Jicha TM (2009) Effect of main-stem dams on zooplankton communities of the Missouri River (USA). Hydrobiologia 628:121–135

    Article  Google Scholar 

  • Heino J, Grönroos M, Ilmonen J, Karhu T, Niva M, Paasivirta L (2013) Environmental heterogeneity and β diversity of stream macroinvertebrate communities at intermediate spatial scales. Freshw Sci 32:142–154

    Article  Google Scholar 

  • Heino J, Melo AS, Bini LM (2015) Reconceptualising the beta diversity-environmental heterogeneity relationship in running water systems. Freshw Biol 60:223–235

    Article  Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. Can Spec Publ Fish Aquat Sci 106:110–127

    Google Scholar 

  • Kaarlejärvi E, Salemaa M, Tonteri T, Merilä P, Laine AL (2020) Temporal biodiversity change following disturbance varies along an environmental gradient. Glob Ecol Biogeogr 30:476–489. https://doi.org/10.1111/geb.13233

    Article  Google Scholar 

  • Korhonen JJ, Soininen J, Hillebrand H (2010) A quantitative analysis of temporal turnover in aquatic species assemblages across ecosystems. Ecology 91:508–517. https://doi.org/10.1890/09-0392.1

    Article  PubMed  Google Scholar 

  • Langenheder S, Berga M, Östman Ö, Székely AJ (2012) Temporal variation of β diversity and assembly mechanisms in a bacterial metacommunity. ISME J 6:1107–1114

    Article  CAS  PubMed  Google Scholar 

  • Latrubesse EM, Stevaux JC (2002) Geomorphology and environmental aspects of the Araguaia fluvial basin, Brazil. Z Fur Geomorphol Suppl 129:109–127

    Google Scholar 

  • Latrubesse EM, Arima E, Ferreira ME, Nogueira SH, Wittmann F, Dias MS, Dagosta FCP, Bayer M (2019) Fostering water resource governance and conservation in the Brazilian Cerrado biome. Conserv Sci Pract 1:77. https://doi.org/10.1111/csp2.77

    Article  Google Scholar 

  • Legendre P (2019) A temporal beta-diversity index to identify sites that have changed in exceptional ways in space–time surveys. Ecol Evol 9:3500–3514

    Article  PubMed  PubMed Central  Google Scholar 

  • Legendre P, Borcard D, Peres-Neto PR (2005) Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol Monogr 75:435–450

    Article  Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  • Li Y, Shen R, Liu X, Su H, Wu F, Chen F (2022) Impacts of nutrient reduction on temporal β-diversity of rotifers: a 19-year limnology case study on Lake Wuli China. Water Res 216:118364. https://doi.org/10.1016/j.watres.2022.118364

    Article  CAS  PubMed  Google Scholar 

  • Lindholm M, Alahuhta J, Heino J, Toivonen H (2021) Temporal beta diversity of lake plants is determined by concomitant changes in environmental factors across decades. J Ecol 109:819–832. https://doi.org/10.1111/1365-2745.13508

    Article  Google Scholar 

  • Lopes PM, Bini LM, Declerck SAJ, Farjalla VF, Vieira LCG, Bonecker CC, Lansac-Toha FA, Esteves FA, Bozelli RL (2014) Correlates of zooplankton beta diversity in tropical lake systems. PLoS ONE 9:e109581. https://doi.org/10.1371/journal.pone.0109581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes VG, Branco CWC, Kozlowsky-Suzuki B, Sousa-Filho IF, Souza LC, Bini LM (2017) Predicting temporal variation in zooplankton beta diversity is challenging. PLoS ONE 12:e0187499

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopes VG, Branco CWC, Kozlowsky-Suzuki B, Bini LM (2019) Zooplankton temporal beta diversity along the longitudinal axis of a tropical reservoir. Limnology 20:121–130. https://doi.org/10.1007/s10201-018-0558-y

    Article  Google Scholar 

  • Mackereth FYH, Heron JG, Talling JJ (1978) Water analysis: some revised methods for limnologists. Freshwater Biological Association of Scientific Publication, Ambleside

    Google Scholar 

  • Magurran AE, Baillie SR, Buckland ST, Dick JMP, Elston DA, Scott EM, Smith RI, Somerfield PJ, Watt AD (2010) Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends Ecol Evol 25:574–582. https://doi.org/10.1016/j.tree.2010.06.016

    Article  PubMed  Google Scholar 

  • Magurran AE, Dornelas M, Moyes F, Henderson PA (2019) Temporal β diversity: a macroecological perspective. Glob Ecol Biogeogr 28:1949–1960. https://doi.org/10.1111/geb.13026

    Article  Google Scholar 

  • Mayora G, Scarabotti P, Schneider B, Alvarenga P, Marchese M (2020) Multiscale environmental heterogeneity in a large river-floodplain system. J S Am Earth Sci 100:1046. https://doi.org/10.1016/j.jsames.2020.102546

    Article  Google Scholar 

  • Melo AS, Froehlich CG (2022) An attractor domain model of seasonal and inter-annual β diversity of stream macroinvertebrate communities. Freshw Biol 67:1370–1379. https://doi.org/10.1111/fwb.13923

    Article  CAS  Google Scholar 

  • Oksanen JA, Blanchet RI, Friendly FG, Kindt R, Legendre P, McGlinn DJ, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2020) vegan: community ecology package. R Package Vers 2:5–7

    Google Scholar 

  • Olden JD, Comte L, Giam X (2018) The Homogocene: a research prospectus for the study of biotic homogenisation. NeoBiota 37:23–36

    Article  Google Scholar 

  • Oliveira PT, Nearing MA, Moran MS, Goodrich DC, Wendland E, Gupta HV (2014) Trends in water balance components across the Brazilian Cerrado. Water Resour Res 50:7100–7114

    Article  Google Scholar 

  • Opperman JJ, Luster R, McKenney BA, Roberts M, Meadows AW (2010) Ecologically functional floodplains: Connectivity, flow regime, and scale. J Am Water Resour Assoc 46:211–226

    Article  Google Scholar 

  • Ortega JCG, Thomaz SM, Bini LM (2018) Experiments reveal that environmental heterogeneity increases species richness, but they are rarely designed to detect the underlying mechanisms. Oecologia 188:11–22. https://doi.org/10.1007/s00442-018-4150-2

    Article  PubMed  Google Scholar 

  • Ortega JCG, Geijer J, Bergsten J, Heino J, Herrmann J, Johansson F, Bini LM (2021) Spatio-temporal variation in water beetle assemblages across temperate freshwater ecosystems. Sci Tot Environ 792:148071. https://doi.org/10.1016/j.scitotenv.2021.148071

    Article  CAS  Google Scholar 

  • Patrick CJ, Anderson KE, Brown BL, Hawkins CP, Metcalfe A, Saffarinia P, Siqueira T, Swan CM, Tonkin JD, Yuan LL (2021) The application of metacommunity theory to the management of riverine ecosystems. Wiley Interdiscip Rev Water 8:1–21

    Article  Google Scholar 

  • Pelicice FM, Agostinho AA, Akama A, Andrade Filho JD, Azevedo-Santos VM, Barbosa MVM, Bini LM, Brito MFG, dos Anjos-Candeiro CR, Caramaschi ÉP, Carvalho P, de Carvalho RA, Castello L, das Chagas DB, Chamon CC, Colli GR, Daga VS, Dias MS, Diniz Filho JAF, Fearnside P, de Melo FW, Garcia DAZ, Krolow TK, Kruger RF, Latrubesse EM, Lima Junior DP, de Fátima LS, Lopes FAC, Loyola RD, Magalhães ALB, Malvasio A, De Marco P, Martins PR, Mazzoni R, Nabout JC, Orsi ML, Padial AA, Pereira HR, Pereira TNA, Perônico PB, Petrere M Jr, Pinheiro RT, Pires EF, Pompeu PS, Portelinha TCG, Sano EE, dos Santos VLM, Shimabukuro PHF, da Silva IG, Souza LBE, Tejerina-Garro FL, de Campos-Telles MP, Teresa FB, Thomaz SM, Tonella LH, Vieira LCG, Vitule JRS, Zuanon J (2021) Large-scale degradation of the Tocantins-Araguaia river basin. Environ Manag 68:445–452. https://doi.org/10.1007/s00267-021-01513-7

    Article  Google Scholar 

  • R Core Team (2021) R: a language and environment for statistical computing. Version 4.1.0. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reid AJ, Carlson AK, Creed IF, Eliason EJ, Gell PA, Johnson PTJ, Kidd KA, MacCormack TJ, Olden JD, Ormerod SJ, Smol JP, Taylor WW, Tockner K, Vermaire JC, Dudgeon D, Cooke SJ (2019) Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol Rev 94:849–873

    Article  PubMed  Google Scholar 

  • Rocha RRA, Thomaz SM, Carvalho P, Gomes LC (2009) Modeling chlorophyll-a and dissolved oxygen concentration in tropical floodplain lakes (Paraná River, Brazil). Braz J Biol 69:491–500

    Article  CAS  PubMed  Google Scholar 

  • Saunders JF, Lewis WM (1988) Zooplankton abundance and transport in a tropical white-water river. Hydrobiologia 162:147–155

    Article  Google Scholar 

  • Schmidt G (1973) Primary production of phytoplankton in the three types of Amazonian lakes. II. The limnology of a tropical floodplain lake in Central Amazonia (Lago do Castanho). Amazoniana 4:139–203

    Google Scholar 

  • Scotti A, Jacobsen D, Ștefan V, Tappeiner U, Bottarin R (2022) Small hydropower—small ecological footprint? A multi-annual environmental impact analysis using aquatic macroinvertebrates as bioindicators. Part 1: effects on community structure. Front Environ Sci 10:1–13. https://doi.org/10.3389/fenvs.2022.902603

    Article  Google Scholar 

  • Simões NR, Lansac-tôha FA, Velho LFM, Bonecker CC (2012) Intra and inter-annual structure of zooplankton communities in floodplain lakes: a long-term ecological research study. Rev Biol Trop 60:1819–1836

    Article  PubMed  Google Scholar 

  • Socolar JB, Gilroy JJ, Kunin WE, Edwards DP (2016) How should beta-diversity inform biodiversity conservation? Trends Ecol Evol 31:67–80

    Article  PubMed  Google Scholar 

  • Stein A, Gerstner K, Kreft H (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol Lett 17:866–880

    Article  PubMed  Google Scholar 

  • Thomaz SM, Pagioro TA, Bini LM, Roberto MC, Rocha RRA (2004) Limnology of the Upper Paraná Floodplain habitats: patterns of spatio-temporal variations and influence of the water levels. In: Thomaz SM, Agostinho AA, Hahn NS (eds) The Upper Paraná River and its floodplain: physical aspects, ecology and conservation. Backhuys Publishers, Leiden, pp 76–102

    Google Scholar 

  • Tuomisto H (2010a) A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33:2–22

    Article  Google Scholar 

  • Tuomisto H (2010b) A diversity of beta diversities: straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography 33:23–45

    Article  Google Scholar 

  • Vallejos R, Osorio F, Bevilacqua M (2020) Spatial relationships between two georeferenced variables: with applications in R. Springer, New York

    Book  Google Scholar 

  • Vieira LCG, Padial AA, Velho LFM, Carvalho P, Bini LM (2015) Concordance among zooplankton groups in a near-pristine floodplain system. Ecol Ind 58:374–381. https://doi.org/10.1016/j.ecolind.2015.05.049

    Article  Google Scholar 

  • Vieira LCG (2008) Ecological patterns of the zooplankton community in the Araguaia river floodplain (Portuguese). https://files.cercomp.ufg.br/weby/up/104/o/Tese_de_Doutorado_-_Ludgero_CG_Vieira.pdf. Accessed 15 Jul 2022

  • Zhang M, Chen F, Shi X, Yang Z, Kong F (2018) Association between temporal and spatial beta diversity in phytoplankton. Ecography 41:1345–1356. https://doi.org/10.1111/ecog.03340

    Article  Google Scholar 

  • Zorzal-Almeida S, Bini LM, Bicudo DC (2017) Beta diversity of diatoms is driven by environmental heterogeneity, spatial extent and productivity. Hydrobiologia 800:7–16. https://doi.org/10.1007/s10750-017-3117-3

    Article  Google Scholar 

Download references

Acknowledgements

L.M.B. and L.C.G.V. receive continuous grants and research scholarships from Brazilian National Council for Scientific and Technological Development (CNPq). This work was developed in the context of the National Institutes for Science and Technology (INCT) in Ecology, Evolution and Biodiversity Conservation (EECBio), supported by MCTIC/CNPq (proc. 465610/2014-5) and Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Mauricio Bini.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Ulrike Obertegger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 37 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, A.L.A., de Carvalho, P., Granzotti, R.V. et al. Temporal beta diversity increases with environmental variability in zooplankton floodplain communities. Limnology 25, 1–10 (2024). https://doi.org/10.1007/s10201-023-00724-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10201-023-00724-7

Keywords

Navigation