Skip to main content

Advertisement

Log in

Biogeochemical characteristics of the Hövsgöl–Ustilimsk water system in Mongolia and Russia: the effect of environmental factors on dissolved chemical components

  • Asia/Oceania report
  • Published:
Limnology Aims and scope Submit manuscript

Abstract

The objective of this study is to clarify the biogeochemical characteristics of the Hövsgöl–Ustilimsk water system in Mongolia and Russia. For this purpose, we measured dissolved major elements, minor elements, and nutrients in surface water throughout the system. Calcium ions and HCO3 + 2CO3 were the dominant cations and anions in Lake Hövsgöl, respectively. As the water flows down from Lake Hövsgöl to the Egiin Gol and Selenga Rivers in Mongolia, the water quality derived from carbonate rock was found to be influenced by river confluences. In the Selenga River in Russia, major elements were diluted with low-salinity waters from the tributaries. At the boundaries between the Angara River and Bratsk or Ustilimsk Reservoirs, the behaviors of nutrients were affected by the transition of the water area from a riverine zone to a lacustrine zone. Although the composition of cations and anions changes gradually as river water flows further downstream, the water type remains to be Ca–HCO3 throughout the system. Thus, it can be concluded that the fundamental water quality of this system was determined in northern Mongolia, the source area of this water system, and that the environmental factors such as the climate, geology and, geography in its basin from Hövsgöl to Ustilimsk regulated the dissolved chemical components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Andrews JE, Brimblecombe P, Jickells TD, Liss PS (1997) An introduction to environmental chemistry [Chikyu Kankyo Kagaku Nyumon (Watanabe T, Trans)]] (in Japanese). Springer-Verlag Tokyo, Tokyo (Original work published 1996)

    Google Scholar 

  • Belykh OI, Gladkikh AS, Sorokovikova EG, Tikhonova IV, Potapov SA, Fedorova GA (2013) Microcystin-producing cyanobacteria in water reservoirs of Russia, Belarus and Ukraine. Chem Sustain Dev 21:347–361

    Google Scholar 

  • Bernar EK, Bernar RA (1996) Global environment: water, air, and geochemical cycles. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Björkvald L, Buffam I, Laudon H, Mörth CM (2008) Hydrogeochemistry of Fe and Mn in small boreal streams: The role of seasonality, landscape type and scale. Geochim Cosmochim Acta 72:2789–2804. https://doi.org/10.1016/j.gca.2008.03.024

    Article  CAS  Google Scholar 

  • Cameron EM, Hall GEM, Veizer J, Krouse HR (1995) Isotopic and elemental hydrogeochemistry of a major river system: Fraser River, British Colunbia, Canada. Chem Geol 122:149–169

    Article  CAS  Google Scholar 

  • Chalov SR, Jarsjö J, Kasimov NS, Romanchenko AO, Pietron J, Thorslund J, Promakhova EV (2015) Spatio-temporal variation of sediment transport in the Selenga River basin, Mongolia and Russia. Environ Earth Sci 73:663–680

    Article  CAS  Google Scholar 

  • Chebykin EP, Sorokovikova LM, Tomberg IV, Rasskazov SV, Khodzher TV, Grachev MA (2012) Current state of the Selenga River waters in the Russian territory concerning major components and trace elements. Chem Sustain Dev 20:561–580

    Google Scholar 

  • Chen J, Wang F, Xia X, Zhang L (2002) Major element chemistry of the Changjiang (Yangtze River). Chem Geol 187:231–255

    Article  CAS  Google Scholar 

  • Chetelat B, Liu CQ, Zhao ZQ, Wang QL, Li SL, Li J, Wang BL (2008) Geochemistry of the dissolved load of the Changjiang basin river: anthropogenic impacts and chemical weathering. Geochim Cosmochim Acta 72:4254–4277. https://doi.org/10.1016/j.gca.2008.06.013

    Article  CAS  Google Scholar 

  • Das S, Tripathy GR, Rai SK, Danish M, Thakur D, Dutt S, Sarangi S (2021) The role of sulfuric acid in continental weathering: Insights from dissolved major ions and inorganic carbon isotopes of the Teesta River, lower Brahmaputra system. Geochem Geophys Geosystems. https://doi.org/10.1029/2020GC009324

    Article  Google Scholar 

  • Drake TW, Hemingway JD, Kurek MR, Peucker-Ehrenbrink B, Brown KA, Holmes RM, Galy V, Moura JMS, Mitsuya M, Wassenaar LI, Six J, Spencer RGM (2021) The pulse of the Amazon: Fluxes of dissolved organic carbon, nutrients, and ions from the world’s largest river. Global Biogeochem Cycles. https://doi.org/10.1029/2020GB006895

    Article  Google Scholar 

  • Dupre B, Gaillardet J, Rousseau D, Allegre CJ (1996) Major and trace elements of river-borne material: the Congo Basin. Geochim Cosmochim Acta 60:1301–1321

    Article  CAS  Google Scholar 

  • Edmond JM, Huh Y (1997) Chemical weathering yields from basement and orogenic terrains in hot and cold climates. In: Ruddiman WF (ed) Tectonic uplift and climate change. Plenum, New York, pp 329–351

    Chapter  Google Scholar 

  • Edmond JM, Palmer MR, Measures CI, Brown ET, Huh Y (1996) Fluvial geochemistry of the eastern slope of the northeastern Andes and its foredeep in the drainage of the Orinoco in Colombia and Venezuela. Geochim Cosmochim Acta 60:2949–2976

    Article  CAS  Google Scholar 

  • Falkner KK, Measures CI, Herbelin SE, Edmond JM, Weiss RF (1991) The major and minor element geochemistry of Lake Baikal. Limnol Oceanogr 36:413–423

    Article  CAS  Google Scholar 

  • Falkner KK, Church M, Measures CI, LeBaron G, Thouron D, Jeandel C, Stordal MC, Gill GA, Mortlock R, Froelich P, Chan LH (1997) Minor and trace element chemistry of Lake Baikal, its tributaries, and surrounding hot springs. Limnol Oceanogr 42:329–345

    Article  CAS  Google Scholar 

  • Garmaev EZ, Kulikov AI, Tsydypov BZ, Sodnomov BV, Ayurzhanaev AA (2019) Environmental conditions of Zakamensk Town (Dzhida River basin hotspot). Geogr Environ Sustain 12:224–239. https://doi.org/10.24057/2071-9388-2019-32

    Article  Google Scholar 

  • Goncharov AV, Baturina NS, Maryinsky VV, Kaus AK, Chalov SR (2020) Ecological assessment of the Selenga River basin, the main tributary of Lake Baikal, using aquatic macroinvertebrate communities as bioindicators. J Great Lakes Res 46:53–61. https://doi.org/10.1016/j.jglr.2019.11.005

    Article  CAS  Google Scholar 

  • Gordeev VV, Sidorov IS (1993) Concentrations of major elements and their outflow into the Laptev Sea by the Lena River. Mar Chem 43:33–45

    Article  CAS  Google Scholar 

  • Gordeev VV, Beeskow B, Rachold V (2007) Reports on polar and marine research. Geochemistry of the Ob and Yenisey estuaries: a comparative study. The Helmholtz Association, Berlin

    Google Scholar 

  • Goulden CE, Sitnikova T, Gelhaus J, Boldgiv B (2006) The geology, biodiversity and ecology of Lake Hövsgöl (Mongolia). Backhuys, Leiden

    Google Scholar 

  • Holmes RM, McClelland JW, Peterson BJ, Tank SE, Bulygina E, Eglinton TI, Gordeev VV, Gurtovaya TY, Raymond PA, Repeta DJ, Staples R, Striegl RG, Zhulidov AV, Zimov SA (2012) Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas. Estuaries Coasts 35:369–382. https://doi.org/10.1007/s12237-011-9386-6

    Article  CAS  Google Scholar 

  • Horne AJ, Goldman CR (1994) Limnology. McGraw-Hill, New York

    Google Scholar 

  • Huh Y, Tsoi MY, Zaitsev A, Edmond JM (1998a) The fluvial geochemistry of the rivers of Eastern Siberia: I. Tributaries of the Lena River draining the sedimentary platform of the Siberian Craton. Geochim Cosmochim Acta 62:1657–1676

    Article  CAS  Google Scholar 

  • Huh Y, Panteleyev G, Babich D, Zaitsev A, Edomond JM (1998b) The fluvial geochemistry of the rivers of Eastern Siberia: II. Tributaries of the Lena, Omoloy, Yana, Indigirka, Kolyma, and Anadyr draining the collisional/accretionary zone of the Verkhoyansk and Cherskiy ranges. Geochim Cosmochim Acta 62:2053–2075

    Article  CAS  Google Scholar 

  • Humborg C, Blomqvist S, Avsan E, Bergensund Y (2002) Hydrological alterations with river damming in northern Sweden: implications for weathering and river biogeochemistry. Global Biogeochem Cycles 16:1039–1051

    Article  Google Scholar 

  • Hyodo F, Nishikawa J, Kohzu A, Fujita N, Saizen I, Tsogtbaatar J, Javzan C, Enkhtuya M, Gantomor D, Amartuvshin N, Ishii R, Wada E (2012) Variation in nitrogen isotopic composition in the Selenga river watershed, Mongolia. Limnology 13:155–161. https://doi.org/10.1007/s10201-011-0351-7

    Article  CAS  Google Scholar 

  • Inam E, Khantotong S, Kim KW, Tumendemberel B, Erdenetsetseg S, Puntsag T (2011) Geochemical distribution of trace element concentrations in the vicinity of Boroo gold mine, Selenge Province, Mongolia. Environ Geochem Health 33:57–69. https://doi.org/10.1007/s10653-010-9347-1

    Article  CAS  Google Scholar 

  • Ishikawa (2012) Gesui Shiken RiHouhou (Wastewater examination method). Japan Sewage Works Association, Tokyo

    Google Scholar 

  • Japanese Society of Limnology (2006) Rikusui no Ziten (Limnological Dictionary). Kodansya, Tokyo (In Japanese)

    Google Scholar 

  • Karnaukhova GA (2008) Hydrochemistry of the Angara and reservoirs of the Angara cascade. Water Resour 35:71–79. https://doi.org/10.1134/S0097807808010089

    Article  CAS  Google Scholar 

  • Kasimov N, Shinkareva G, Lychagin M, Kosheleva N, Chalov S, Pashkina M, Thorslund J, Jarsjö J (2020a) River water quality of the Selenga-Baikal basin: part I—spatio-temporal patterns of dissolved and suspended metals. Water 12:2137. https://doi.org/10.3390/w12082137

    Article  CAS  Google Scholar 

  • Kasimov N, Shinkareva G, Lychagin M, Chalov S, Pashkina M, Thorslund J, Jarsjö J (2020b) River water quality of the Selenga-Baikal basin: part II—metal partitioning under different hydroclimatic conditions. Water 12:2392. https://doi.org/10.3390/w12092392

    Article  CAS  Google Scholar 

  • Khazheeva ZI, Urbazaeva SD, Bodoev NV, Radnaeva LD, Kalinin YO (2004) Heavy metals in the water and bottom sediments of the Selenga River delta. Water Resour 31:64–67

    Article  CAS  Google Scholar 

  • Khazheeva ZI, Tulokhonov AK, Dashibalova LT (2007) Seasonal and spatial dynamics of TDS and major ions in the Selenga River. Water Resour 34:444–449

    Article  CAS  Google Scholar 

  • Kira T (1995) Compact-size edition of data book of world lake environments—a survey of the state of world lakes—Asia and Oceania. International Lake Environment Committee Foundation, Kusatsu

    Google Scholar 

  • Kozhova OM, Izmest’eva LR (1998) Lake Baikal: evolution and biodiversity. Backhuys, Leiden

    Google Scholar 

  • Liu SM, Zhang J, Chen HT, Wu Y, Xiong H, Zhang ZF (2003) Nutrients in the Changjiang and its tributaries. Biogeochemistry 62:1–18

    Article  CAS  Google Scholar 

  • Lorenzen CJ (1967) Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol Oceanogr 12:343–346

    Article  CAS  Google Scholar 

  • Lychagin M, Chalov S, Kasimov N, Shinkareva G, Jarsjo J, Thorslund J (2017) Surface water pathways and fluxes of metals under changing environmental conditions and human interventions in the Selenga River system. Environ Earth Sci 76:1. https://doi.org/10.1007/s12665-016-6304-z

    Article  CAS  Google Scholar 

  • Ma X, Yasunari T, Ohata T, Natsagdorj L, Davaa G, Oyunbaatar D (2003) Hydrological regime analysis of the Selenge River basin, Mongolia. Hydrol Process 17:2929–2945. https://doi.org/10.1002/hyp.1442

    Article  Google Scholar 

  • Mavromatis V, Rinder T, Prokushkin AS, Pokrovsky OS, Korets MA, Chmeleff J, Oelkers EH (2016) The effect of permafrost, vegetation, and lithology on Mg and Si isotope composition of the Yenisey River and its tributaries at the end of the spring flood. Geochim Cosmochim Acta 191:32–46. https://doi.org/10.1016/j.gca.2016.07.003

    Article  CAS  Google Scholar 

  • McGinnis DF, Bocaniov S, Teodoru C, Friedl G, Lorke A, Wüest A (2006) Silica retention in the iron gate I reservoir on the Danube River: the role of side bays as nutrient sinks. River Res Applic 22:441–456. https://doi.org/10.1002/rra.916

    Article  Google Scholar 

  • Meyback M (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. Am J Sci 287:401–428

    Article  Google Scholar 

  • Mineral Resource Authority of Mongolia (1998) Geological map of Mongolia. Mineral resource authority of Mongolia. Geological Office Geological Information Center, Ulaanbaatar

    Google Scholar 

  • Mitamura O, Khadbaatar D, Ishida N (2010) Comparative investigation of chemical and biological characteristics in waters and trophic state of Mongolian lakes. Limnology 11:17–30. https://doi.org/10.1007/s10201-009-0280-x

    Article  CAS  Google Scholar 

  • Mochizuki A, Murata T, Hosoda K, Katano T, Tanaka Y, Mimura T, Mitamura O, Nakano S, Okazaki Y, Sugiyama Y, Satoh Y, Watanabe Y, Dulmaa A, Ayushsuren C, Ganchimeg D, Drucker VV, Fialkov V, Sugiyama M (2018) Distribution and geochemical behaviors of oxyanion-forming trace elements and uranium in the Hövsgöl-Baikal-Yenisei water system of Mongolia and Russia. J Geochem Explor 188:123–136. https://doi.org/10.1016/j.gexplo.2018.01.009

    Article  CAS  Google Scholar 

  • Murata A, Aoyama M, Cheong C, Miura T, Fujii T, Mitsuda H, Kitao T, Sasano D, Nakano T, Nagai N, Kodama T, Kasai H, Kiyomoto Y, Setou T, Ono T, Yokogawa S, Arii Y, Sone T, Ishikawa Y, Yoshimura T, Uchida H, Tanaka T, Kayukawa Y, Wakita M (2019) Current situation and future perspective for environmental standards of seawater: commencing with certified reference materials (CRMs) for nutrients. Oceanogr Jpn 29:153–187. https://doi.org/10.5928/kaiyou.29.5_153 (In Japanese)

    Article  Google Scholar 

  • Nadmitov B, Hong S, Kang SI, Chu JM, Gomboev B, Janchivdorj L, Lee CH, Khim JS (2015) Large-scale monitoring and assessment of metal contamination in surface water of the Selenga River Basin (2007–2009). Environ Sci Pollut Res 22:2856–2867. https://doi.org/10.1007/s11356-014-3564-6

    Article  CAS  Google Scholar 

  • Nandintsetseg B, Greene JS, Goulden CE (2007) Trends in extreme daily precipitation and temperature near Lake Hövsgöl. Mongolia Int J Climatol 27:341–347. https://doi.org/10.1002/joc.1404

    Article  Google Scholar 

  • Nikolaevich BA (2013) State of environment report the lake Baikal basin. Integrated Natural Resource Management in the Baikal Basin Transboundary Ecosystem, Ulan-Ude

    Google Scholar 

  • Pavlov DF, Tomilina II, Zakonnov VV, Amgaabazar E (2008) Toxicity assessment of bottom sediments in watercourses in Selenga River basin on the territory of Mongolia. Water Resour 35:92–96. https://doi.org/10.1134/S0097807808010119

    Article  CAS  Google Scholar 

  • Poletaeva VI, Pastukhov MV, Zagorulko NA, Belogolova GA (2018) Change in water hydrochemistry in bays of the Bratsk Reservoir caused by forest harvesting operations. Water Resour 45:369–378. https://doi.org/10.1134/S0097807818030119

    Article  CAS  Google Scholar 

  • Poletaeva VI, Pastukhov MV, Tirskikh EN (2021) Dynamics of trace element composition of Bratsk Reservoir water in different periods of anthropogenic impact (Baikal Region, Russia). Arch Environ Contam Toxicol 80:531–545. https://doi.org/10.1007/s00244-021-00819-1

    Article  CAS  Google Scholar 

  • Prokushkin AS, Pokrovsky OS, Korets MA, Rubtsov AV, Titov SV, Tokareva IV, Kolosov RA, Amon RMW (2018) Sources of dissolved organic carbon in rivers of the Yenisei River basin. Dokl Earth Sci 480:763–766. https://doi.org/10.1134/S1028334X18060077

    Article  CAS  Google Scholar 

  • Reeder SW (1972) Hydrogeochemistry of the surface waters of the Mackenzie River drainage basin, Canada-I. Factors controlling inorganic composition. Geochim Cosmochim Acta 36:825–865

    Article  CAS  Google Scholar 

  • Roth VN, Dittmar T, Gaupp R, Gleixner G (2013) Latitude and pH driven trends in the molecular composition of DOM across a north south transect along the Yenisei River. Geochim Cosmochim Acta 123:93–105. https://doi.org/10.1016/j.gca.2013.09.002

    Article  CAS  Google Scholar 

  • Sarin MM, Krishnaswami S, Dill K, Somayajulu BLK, Moore WS (1989) Major ion chemistry of the Ganga-Brahmapu river system: weathering processes and fluxes to the Bay of Bengal. Geochim Cosmochim Acta 53:997–1009

    Article  CAS  Google Scholar 

  • Shrestha RR, Schnorbus MA, Werner AT, Berland AJ (2012) Modelling spatial and temporal variability of hydrologic impacts of climate change in the Fraser River basin, British Columbia. Canada Hydrol Process 26:1840–1860. https://doi.org/10.1002/hyp.9283

    Article  Google Scholar 

  • Sinyukovich VN (2003) Relationships between water flow and dissolved solids discharge in the major tributaries of Lake Baikal. Water Resour 30:186–190

    Article  CAS  Google Scholar 

  • Sinyukovich VN, Sorokovikova LM, Tomberg IV, Tulokhonov AK (2010) Climate changes and the Selenga River chemical flow. Dokl Earth Sci 433:1127–1131. https://doi.org/10.1134/S1028334X10080295

    Article  CAS  Google Scholar 

  • Sorokovikova LM, Popovskaya GI, Tomberg IV, Sinyukovich VN, Kravchenko OS, Marinaite II, Bashenkhaeva NV, Khodzher TV (2013) The Selenga River water quality on the border with Mongolia at the beginning of the 21st century. Russ Meteorol Hydrol 38:126–133. https://doi.org/10.3103/S1068373913020106

    Article  Google Scholar 

  • Stallard RF, Edmond JM (1983) Geochemistry of the Amazon 2. The influence of geology and weathering environment on the dissolved load. J Geophys Res 88:9671–9688

    Article  CAS  Google Scholar 

  • Stubblefield A, Chandra S, Eagan S, Tuvshinjargal D, Davaadorzh G, Gilroy D, Sampson J, Thorne J, Allen B, Hogan Z (2005) Impacts of gold mining and land use alterations on the water quality of central Mongolian rivers. Integr Environ Assess Manag 1:365–373. https://doi.org/10.1897/1551-3793(2005)1[365:IOGMAL]2.0.CO;2

    Article  CAS  Google Scholar 

  • Suzuki R, Ishimaru T (1990) An improved method for the determination of phytoplankton chlorophyll using N, N-Dimethylformamide. J Oceanogr Soc Jpn 46:190–194

    Article  CAS  Google Scholar 

  • Takahashi Y, Takara K, Nonomura K, Haruyama S (2013) Zensekai no Kasenjiten (River dictionary in the World) (in Jamanese). Maruzen, Tokyo

    Google Scholar 

  • Tank SE, Frey KE, Striegl RG, Raymond PA, Holmes RM, McClelland JW, Peterson BJ (2012) Landscape-level controls on dissolved carbon flux from diverse catchments of the circumboreal. Global Biogeochem Cycles. https://doi.org/10.1029/2012GB004299

    Article  Google Scholar 

  • Telang SA, Pocklington R, Naidu AS, Romankevich EA, Gitelson II, Gladyshev MI (1991) Carbon and mineral transport in major North American, Russian arctic, and Siberian rivers: the St Lawrence, the Mackenzie, the Yukon, the arctic Alaskan rivers, the arctic basin rivers in the Soviet Union, and the Yenisei. In: Degens ET, Kempe S, Richey JE (eds) Biogeochemistry of major world rivers. Scope 42. Wiley, New York, pp 75–104

    Google Scholar 

  • Teodoru C, Dimopoulos A, Wehrli B (2006) Biogenic silica accumulation in the sediments of Iron Gate I Reservoir on the Danube River. Aquat Sci 68:469–481. https://doi.org/10.1007/s00027-006-0822-9

    Article  CAS  Google Scholar 

  • Thornton KW, Kimmel BL, Payne FE (2004) Reservoir limnology: ecological perspectives [Damuko no Rikusuigaku (Murakami T, Hayashi Y, Okuda S, Saijo Y, Trans)]] (in Japanese). Seibutsu Kenkyu Sya, Tokyo (Original work published 1990)

    Google Scholar 

  • Thorslund J, Jarsjö J, Chalov SR, Belozerova EV (2012) Gold mining impact on riverine heavy metal transport in a sparsely monitored region: the upper Lake Baikal Basin case. J Environ Monit 14:2780–2792. https://doi.org/10.1039/c2em30643c

    Article  CAS  PubMed  Google Scholar 

  • Tulokhonov AK (2015) The ecological atlas of the Baikal basin. Integrated Natural Resource Management in the Baikal Basin Transboundary Ecosystem, Ulan-Ude

    Google Scholar 

  • Vishnevskaya IA, Letnikova EF (2013) Chemostratigraphy of the Vendian-Cambrian carbonate sedimentary cover of the Tuva-Mongolian microcontinent. Russ Geol Geophys 54:567–586. https://doi.org/10.1016/j.rgg.2013.04.008

    Article  Google Scholar 

  • Vyruchalkina TY (2004) Lake Baikal and the Angara river before and after the construction of reservoirs. Water Resour 31:483–489. https://doi.org/10.1023/B:WARE.0000041916.49909.d0

    Article  CAS  Google Scholar 

  • Water Systems Analysis Group (2014) R-ArcticNET. In: Water Systems Analysis Group. Available via DIALOG. https://www.r-arcticnet.sr.unh.edu/v4.0/index.html Cited 16 Dec 2016

  • Yamashita M (2009) Renzoku Nagare Bunsekihou (The continuous flow analysis). Kankyoshimbunsya, Tokyo (In Japanese)

    Google Scholar 

  • Yang D, Ye B, Kane D (2004) Streamflow changes over Siberian Yenisei river basin. J Hydrol 296:59–80. https://doi.org/10.1016/j.jhydrol.2004.03.017

    Article  Google Scholar 

  • Yentsch CS, Menzel DW (1963) A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep Sea Res 10:221–231. https://doi.org/10.1016/0011-7471(63)90358-9

    Article  CAS  Google Scholar 

  • Yip QKY, Burn DH, Seglenieks F, Pietroniro A, Soulis ED (2012) Climate impacts on hydrological variables in the Mackenzie river basin. Can Water Resour J 37(3):209–230. https://doi.org/10.4296/cwrj2011-899

    Article  Google Scholar 

  • Zakharova EA, Pokrovsky OS, Dupre B, Zaslavskaya MB (2005) Chemical weathering of silicate rocks in Aldan Shield and Baikal Uplift: insights from long-term seasonal measurements of solute fluxes in rivers. Chem Geol 214:223–248. https://doi.org/10.1016/j.chemgeo.2004.10.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the staff members of the Baikal Museum and the Limnological Institute, Siberian Branch of the Russian Academy of Sciences, and the Institute of Biology, Mongolian Academy of Sciences for their generous collaboration. We appreciate the supporting staff for the field survey on the Hövsgöl–Baikal–Yenisei water system, including the crew members of the R/V Trescov on Lake Baikal for their kind cooperation with sample collection. This study was supported partly by JSPS (Japan) KAKENHI grant numbers 18255001 and 21255002. In this research, we observed the laws and regulations of Mongolia, Russia, and Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ko Hosoda.

Additional information

Handling Editor: Kohei Yoshiyama.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Darmaa Ganchimeg: Deceased.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2738 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosoda, K., Murata, T., Mochizuki, A. et al. Biogeochemical characteristics of the Hövsgöl–Ustilimsk water system in Mongolia and Russia: the effect of environmental factors on dissolved chemical components. Limnology 23, 385–402 (2022). https://doi.org/10.1007/s10201-021-00694-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10201-021-00694-8

Keywords

Navigation