Skip to main content
Log in

Abundance and pigment type composition of picocyanobacteria in Barguzin Bay, Lake Baikal

  • Research paper
  • Published:
Limnology Aims and scope Submit manuscript

Abstract

In Lake Baikal, picocyanobacteria are the most important primary producers during the summer. Freshwater picocyanobacteria are discriminated into either the phycoerythrin (PE)-rich or the phycocyanin (PC)-rich types according to their pigment composition. The distributions of these two types of picocyanobacteria were investigated in Barguzin Bay. The PC-rich type accounted for >98% of the total picocyanobacteria at the station near the shore of the bay where river water flows directly in. In the offshore area of the lake, all of the picocyanobacteria cells were of the PE-rich type. In addition, the occurrence of the PC-rich type was restricted to the station, where the attenuation coefficient exceeded 0.25 m−1. Near the shore, where the turbidity was high (>1 NTU), the cell densities of both the PE- and PC-rich types increased away from the river mouth. This indicates that the PC-rich type cells grow near the shore of the bay where turbidity is high. Since the PC-rich type could not grow well when cells were incubated in offshore lake water, restricted distribution of the PC-rich type could also be explained by their growth capability. The present study clearly demonstrated the shift in the pigment type composition of picocyanobacteria from the coastal to the pelagic zone of Lake Baikal. The co-existence of the two pigment types probably enables the abundance of the picocyanobacterial community to be stable over a broader range of environmental conditions than would be possible for a single pigment type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agawin NSR, Duarte CM, Agusti S (2000) Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol Oceanogr 45:591–600

    Article  CAS  Google Scholar 

  • Belykh OI, Sorokovikova EG (2003) Autotrophic picoplankton in Lake Baikal: abundance, dynamics, and distribution. Aquat Ecosyst Health Manag 6:251–261

    Article  Google Scholar 

  • Belykh OI, Ekaterina G, Sorokovikova T, Saphonova A, Tikhonova IV (2006) Autotrophic picoplankton of Lake Baikal: composition, abundance and structure. Hydrobiol 568(Suppl):9–17

    Article  Google Scholar 

  • Boraas ME, Bolgrien DW, Holen DA (1991) Determination of eubacterial and cyanobacterial size and number in Lake Baikal using epifluorescence. Int Rev Gesamt Hydrobiol 76:537–544

    Article  Google Scholar 

  • Callieri C, Amicucci E, Bertoni R, Vörös L (1996) Fluorometric characterization of two picocyanobacteria strains from lakes of different underwater light quality. Int Rev Gesamt Hydrobiol 81:13–23

    Article  CAS  Google Scholar 

  • Crosbie ND, Pöckl M, Weisse T (2003) Dispersal and phylogenetic diversity of nonmarine picocyanobacteria, inferred from 16S rRNA gene and cpcBA-intergenic spacer sequence analyses. Appl Environ Microbiol 69:5716–5721

    Article  PubMed  CAS  Google Scholar 

  • Ernst A, Becker S, Wollenzien UIA, Postius C (2003) Ecosystem-dependent adaptive radiations of picocyanobacteria inferred from 16S rRNA and ITS-1 sequence analysis. Microbiology 149:217–228

    Article  PubMed  CAS  Google Scholar 

  • Fahnenstiel GL, Carrick HJ, Iturriaga R (1991) Physiological characteristics and food-web dynamics of Synechococcus in Lakes Huron and Michigan. Limnol Oceanogr 36:219–234

    Article  Google Scholar 

  • Fuller NJ, Marie D, Partensky F, Vaulot D, Post AF, Scanlan DJ (2003) Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the Red Sea. Appl Environ Microbiol 69:2430–2443

    Article  PubMed  CAS  Google Scholar 

  • Grossmann AR, Schaefer MR, Chiang GG, Collier JL (1994) The responses of cyanobacteria to environmental conditions: light and nutrients. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, The Netherlands, pp 641–675

    Google Scholar 

  • Hauschild CA, McMurter HJG, Pick FR (1991) Effect of spectral quality on growth and pigmentation of picocyanobacteria. J Phycol 27:698–702

    Article  Google Scholar 

  • Hirose M, Katano T, Hayami Y, Kaneda A, Kohama T, Takeoka H, Nakano S (2008) Changes in the abundance and composition of picophytoplankton in relation to the occurrence of a Kyucho and a bottom intrusion in the Bungo Channel, Japan. Estuar Coast Shelf Sci 76:293–303

    Article  Google Scholar 

  • Honda D, Yokota A, Sugiyama J (1999) Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J Mol Evol 48:723–739

    Article  PubMed  CAS  Google Scholar 

  • Katano T, Fukui M, Watanabe Y (2001) Identification of cultured and uncultured picocyanobacteria from a mesotrophic freshwater lake based on the partial sequences of 16S rDNA. Limnology 2:213–218

    Article  CAS  Google Scholar 

  • Katano T, Kaneda A, Takeoka H, Nakano S (2005a) Seasonal changes in the abundance and composition of picophytoplankton in relation to the occurrence of Kyucho and bottom intrusion in Uchiumi Bay, Japan. Mar Ecol Prog Ser 298:59–67

    Article  CAS  Google Scholar 

  • Katano T, Nakano S, Ueno H, Mitamura O, Anbutsu K, Kihira M, Satoh Y, Drucker V, Sugiyama M (2005b) Abundance, growth and grazing loss rates of picophytoplankton in Barguzin Bay, Lake Baikal. Aquat Ecol 39:431–438

    Article  Google Scholar 

  • Katano T, Kaneda A, Kanzaki N, Obayashi Y, Morimoto A, Onitsuka G, Yasuda H, Mizutani S, Kon Y, Hata K, Takeoka H, Nakano S (2007) Distribution of prokaryotic picophytoplankton from Seto Inland Sea to the Kuroshio region, with special reference to Kyucho events. Aquat Microb Ecol 46:191–201

    Article  Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge

    Google Scholar 

  • Kozhov M (1963) Lake Baikal and its life. In: Weisbach WW, van Oye P (eds) Monographhiae Biologicae, vol 6. Dr. W. Junk Publishers, The Hague

    Google Scholar 

  • Kozhova OM (1987) Phytoplankton of Lake Baikal: structural and functional characteristics. Arch Hydrobiol Beih Ergebn Limnol 25:19–37

    Google Scholar 

  • Liu H, Dagg M, Campbell L, Urban-Rich J (2004) Picophytoplankton and bacterioplankton in the Mississippi River plume and its adjacent waters. Estuaries 27:147–156

    Article  Google Scholar 

  • Maclsaac EA, Stockner JG (1993) Enumeration of phototrophic picoplankton by autofluorescence microscopy. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. Lewis, Florida, pp 187–197

    Google Scholar 

  • Mitamura O (1997) An improved method for the determination of nitrate in freshwaters based on hydrazinium reduction. Mem Osaka Kyoiku Univ Ser III 45:297–303

    CAS  Google Scholar 

  • Moore LR, Rocap G, Chisholm SW (1998) Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393:464–467

    Article  PubMed  CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31:36

    Article  CAS  Google Scholar 

  • Nagata T, Takai K, Kawanobe K, Kim D-S, Nakazato R, Guselnikova N, Bondarenko N, Mologawaya O, Kostrnova T, Drucker V, Satoh Y, Watanabe Y (1994) Autotrophic picoplankton in southern Lake Baikal: abundance, growth and grazing mortality during summer. J Plankton Res 16:945–959

    Article  Google Scholar 

  • Nakano S, Mitamura O, Sugiyama M, Maslennikov A, Nishibe Y, Watanabe Y, Drucker V (2003) Vertical planktonic structure in the central basin of Lake Baikal in summer 1999, with special reference to the microbial food web. Limnology 4:155–160

    Article  CAS  Google Scholar 

  • Pick FR (1991) The abundance and composition of freshwater picocyanobacteria in relation to light penetration. Limnol Oceanogr 36:1457–1462

    CAS  Google Scholar 

  • Popovskaya GI (1968) A new species of genus Synechocystis asuv. genus in Lake Baikal plankton. In: Novosti sistematiki nizshych rastenii. Leningrad, pp 3–5 (in Russian)

  • Postius C, Ernst A (1999) Mechanisms of dominance: coexistence of picocyanobacterial genotypes in a freshwater ecosystem. Arch Microbiol 172:69–75

    Article  PubMed  CAS  Google Scholar 

  • Postius C, Ernst A, Kenter U, Böger P (1996) Persistence and genetic diversity among strains of phycoerythrin-rich cyanobacteria from the picoplankton of Lake Constance. J Plankton Res 18:1159–1166

    Article  Google Scholar 

  • Sagi T (1966) Determination of ammonia in sea water by the indophenol method and its application to the coastal and offshore waters. Oceanogr Mag 18:43–51

    Google Scholar 

  • Satoh Y, Katano T, Satoh T, Mitamura O, Ambutsu K, Nakano S, Ueno H, Kihira M, Drucker V, Tanaka Y, Mimura T, Watanabe Y, Sugiyama M (2006) Nutrient limitation of the primary production of phytoplankton in Lake Baikal. Limnology 7:225–229

    Article  CAS  Google Scholar 

  • Shimaraev MN, Granin NG, Zhdanov AA (1993) Deep ventilation of Lake Baikal waters due to spring thermal bars. Limnol Oceanogr 38:1068–1072

    Article  Google Scholar 

  • Stomp M, Huisman J, de Jongh F, Veraart AJ, Gerla D, Rijkeboer M, Ibelings BW, Wollenzien UIA, Stal LJ (2004) Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432:104–107

    Article  PubMed  CAS  Google Scholar 

  • Stomp M, Huisman J, Vörös L, Pick FR, Laamanen M, Haverkamp T, Stal LJ (2007) Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecol Lett 10:290–298

    Article  PubMed  Google Scholar 

  • Ueno H, Katano T, Nakano S, Anbutsu K, Mitamura O, Satoh Y, Drucker V, Sugiyama M (2005) Abundance and community structure of picoplankton and protists in the microbial food web of Barguzin Bay, Lake Baikal. Aquat Ecol 39:263–270

    Article  CAS  Google Scholar 

  • Vörös L, Callieri C, V-Balogh K, Bertoni R (1998) Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia 369/370:117–125

    Article  Google Scholar 

  • Watanabe Y, Drucker V (1999) Phytoplankton blooms in Lake Baikal, with reference to the lake’s present state of eutrophication. In: Kawanabe H, Coulter GW, Roosevelt AC (eds) Ancient lakes: their cultural and biological diversity. Kenobi Productions, Belgium, pp 217–225

    Google Scholar 

  • Waterbury JB, Watson SW, Valois FW, Franks DG (1986) Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. In: Platt T, Li WKW (eds) Photosynthetic picoplankton, vol 214. Canadian Bulletin of Fisheries and Aquatic Sciences, vol 214, pp 71–120

  • West NJ, Scanlan DJ (1999) Niche-partitioning of Prochlorococcus populations in a stratified water column in the Eastern North Atlantic Ocean. Appl Environ Microbiol 65:2585–2591

    PubMed  CAS  Google Scholar 

  • Wood AM, Phinney DA, Yentsch CS (1998) Water column transparency and the distribution of spectrally distinct forms of phycoerythrin-containing organisms. Mar Ecol Prog Ser 162:25–31

    Article  Google Scholar 

  • Yoshida T, Sekino T, Genkai-Kato M, Logacheva NP, Bondarenko NA, Kawabata Z, Khodzher TV, Melnik NG, Hino S, Nozaki K, Nishimura Y, Nagata T, Higashi M, Nakanishi M (2003) Seasonal dynamics of primary production in the pelagic zone of southern Lake Baikal. Limnology 4:53–62

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. A. Turner for his correction of the English in this paper and his constructive comments on the manuscript. This study was supported, in part, by JSPS project no. 14255015 and KOPRI project no. PE06060.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Toshiya Katano or Sung-Ho Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katano, T., Nakano, Si., Mitamura, O. et al. Abundance and pigment type composition of picocyanobacteria in Barguzin Bay, Lake Baikal. Limnology 9, 105–114 (2008). https://doi.org/10.1007/s10201-008-0239-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10201-008-0239-3

Keywords

Navigation