Skip to main content

Advertisement

Log in

Cost analysis of whole genome sequencing in German clinical practice

  • Original Paper
  • Published:
The European Journal of Health Economics Aims and scope Submit manuscript

Abstract

Objectives

Whole genome sequencing (WGS) is an emerging tool in clinical diagnostics. However, little has been said about its procedure costs, owing to a dearth of related cost studies. This study helps fill this research gap by analyzing the execution costs of WGS within the setting of German clinical practice.

Methodology

First, to estimate costs, a sequencing process related to clinical practice was undertaken. Once relevant resources were identified, a quantification and monetary evaluation was conducted using data and information from expert interviews with clinical geneticists, and personnel at private enterprises and hospitals. This study focuses on identifying the costs associated with the standard sequencing process, and the procedure costs for a single WGS were analyzed on the basis of two sequencing platforms—namely, HiSeq 2500 and HiSeq Xten, both by Illumina, Inc. In addition, sensitivity analyses were performed to assess the influence of various uses of sequencing platforms and various coverage values on a fixed-cost degression.

Results

In the base case scenario—which features 80 % utilization and 30-times coverage—the cost of a single WGS analysis with the HiSeq 2500 was estimated at €3858.06. The cost of sequencing materials was estimated at €2848.08; related personnel costs of €396.94 and acquisition/maintenance costs (€607.39) were also found. In comparison, the cost of sequencing that uses the latest technology (i.e., HiSeq Xten) was approximately 63 % cheaper, at €1411.20.

Conclusions

The estimated costs of WGS currently exceed the prediction of a ‘US$1000 per genome’, by more than a factor of 3.8. In particular, the material costs in themselves exceed this predicted cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bentley, D.R., et al.: Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456(7218), 53–59 (2008). doi:10.1038/nature07517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rockman, M.V.: Reverse engineering the genotype-phenotype map with natural genetic variation. Nature 456(7223), 738–744 (2008). doi:10.1038/nature07633

    Article  CAS  PubMed  Google Scholar 

  3. Shendure, J., Ji, H.: Next-generation DNA sequencing. Nat. Biotechnol. 26(10), 1135–1145 (2008). doi:10.1038/nbt1486

    Article  CAS  PubMed  Google Scholar 

  4. Sanger, F., Nicklen, S., Coulson, A.R.: DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A. 74(12), 5463–5467 (1977)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Renkema, K.Y., Stokman, M.F., Giles, R.H.: Knoers, Nine V A M: next-generation sequencing for research and diagnostics in kidney disease. Nat. Rev. Nephrol. 10(8), 433–444 (2014). doi:10.1038/nrneph.2014.95

    Article  CAS  PubMed  Google Scholar 

  6. Grada, A., Weinbrecht, K.: Next-generation sequencing: methodology and application. J. Invest. Dermatol. 133(8), e11 (2013). doi:10.1038/jid.2013.248

    Article  PubMed  Google Scholar 

  7. Buermans, H.P.J., den Dunnen, J.T.: Next generation sequencing technology: advances and applications. Biochim. Biophys. Acta 1842(10), 1932–1941 (2014). doi:10.1016/j.bbadis.2014.06.015

    Article  CAS  PubMed  Google Scholar 

  8. Quail, M.A., Smith, M., Coupland, P., Otto, T.D., Harris, S.R., Connor, T.R., Bertoni, A., Swerdlow, H.P., Gu, Y.: A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genom. 13, 341 (2012). doi:10.1186/1471-2164-13-341

    Article  CAS  Google Scholar 

  9. Liu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., Lin, D., Lu, L., Law, M.: Comparison of next-generation sequencing systems. J Biomed. Biotechnol 2012, 251364 (2012). doi:10.1155/2012/251364

    PubMed  PubMed Central  Google Scholar 

  10. Green, E.D., Guyer, M.S.: Charting a course for genomic medicine from base pairs to bedside. Nature 470(7333), 204–213 (2011). doi:10.1038/nature09764

    Article  CAS  PubMed  Google Scholar 

  11. Kingsmore, S.F., Saunders, C.J.: Deep sequencing of patient genomes for disease diagnosis: when will it become routine? Science translational medicine 3(87), 87ps23 (2011). doi:10.1126/scitranslmed.3002695

  12. Choi, M., Scholl, U.I., Ji, W., Liu, T., Tikhonova, I.R., Zumbo, P., Nayir, A., Bakkaloğlu, A., Ozen, S., Sanjad, S., Nelson-Williams, C., Farhi, A., Mane, S., Lifton, R.P.: Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc. Natl. Acad. Sci. USA 106(45), 19096–19101 (2009). doi:10.1073/pnas.0910672106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carlson, C.S., Eberle, M.A., Kruglyak, L., Nickerson, D.A.: Mapping complex disease loci in whole-genome association studies. Nature 429(6990), 446–452 (2004). doi:10.1038/nature02623

    Article  CAS  PubMed  Google Scholar 

  14. Meuwissen, T., Goddard, M.: Accurate prediction of genetic values for complex traits by whole-genome resequencing. Genetics 185(2), 623–631 (2010). doi:10.1534/genetics.110.116590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. ACMG Board of Directors: Points to consider in the clinical application of genomic sequencing. Genetics Med Off J Am Coll Med Gen 14(8), 759–761 (2012). doi:10.1038/gim.2012.74

    Article  Google Scholar 

  16. Sawyer, S.L., Hartley, T., Dyment, D.A., Beaulieu, C.L., Schwartzentruber, J., Smith, A., Bedford, H.M., Bernard, G., Bernier, F.P., Brais, B., Bulman, D.E., Warman Chardon, J., Chitayat, D., Deladoëy, J., Fernandez, B.A., Frosk, P., Geraghty, M.T., Gerull, B., Gibson, W., Gow, R.M., Graham, G.E., Green, J.S., Heon, E., Horvath, G., Innes, A.M., Jabado, N., Kim, R.H., Koenekoop, R.K., Khan, A., Lehmann, O.J., Mendoza-Londono, R., Michaud, J.L., Nikkel, S.M., Penney, L.S., Polychronakos, C., Richer, J., Rouleau, G.A., Samuels, M.E., Siu, V.M., Suchowersky, O., Tarnopolsky, M.A., Yoon, G., Zahir, F.R., Majewski, J., Boycott, K.M.: Utility of whole-exome sequencing for those near the end of the diagnostic odyssey: time to address gaps in care. Clin. Gen. (2015). doi:10.1111/cge.12654

  17. Berg, J.S., Khoury, M.J., Evans, J.P.: Deploying whole genome sequencing in clinical practice and public health: meeting the challenge one bin at a time. Genetics Med. 6, 499–504 (2011). doi:10.1097/GIM.0b013e318220aaba

    Article  Google Scholar 

  18. Ford, D., Easton, D.F., Stratton, M., Narod, S., Goldgar, D., Devilee, P., Bishop, D.T., Weber, B., Lenoir, G., Chang-Claude, J., Sobol, H., Teare, M.D., Struewing, J., Arason, A., Scherneck, S., Peto, J., Rebbeck, T.R., Tonin, P., Neuhausen, S., Barkardottir, R., Eyfjord, J., Lynch, H., Ponder, B., Gayther, S.A., Birch, J.M., Lindblom, A., Stoppa-Lyonnet, D., Bignon, Y., Borg, A., Hamann, U., Haites, N., Scott, R.J., Maugard, C.M., Vasen, H., Seitz, S., Cannon-Albright, L.A., Schofield, A., Zelada-Hedman, M.: Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. Am. J. Human Gen. 62(3), 676–689 (1998). doi:10.1086/301749

    Article  CAS  Google Scholar 

  19. Green, R.C., Berg, J.S., Grody, W.W., Kalia, S.S., Korf, B.R., Martin, C.L., McGuire, A.L., Nussbaum, R.L., O’Daniel, J.M., Ormond, K.E., Rehm, H.L., Watson, M.S., Williams, M.S., Biesecker, L.G.: ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Gen. Med. Off. J. Am. Coll. Med. Gen. 15(7), 565–574 (2013). doi:10.1038/gim.2013.73

    CAS  Google Scholar 

  20. Knoppers, B.M., Deschênes, M., Zawati, M.H., Tassé, A.M.: Population studies: return of research results and incidental findings policy statement. Eur. J. Human Gen. EJHG 21(3), 245–247 (2013). doi:10.1038/ejhg.2012.152

    Article  Google Scholar 

  21. Evans, J.P., Skrzynia, C., Burke, W.: The complexities of predictive genetic testing. BMJ 322(7293), 1052–1056 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dondorp, W.J., de Wert, W.J., Guido, M.W.R.: The ‘thousand-dollar genome’: an ethical exploration. Eur. J. Hum. Genet. 21(Suppl 1), S6–26 (2013). doi:10.1038/ejhg.2013.73

    Article  PubMed  PubMed Central  Google Scholar 

  23. McBride, C.M., Koehly, L.M., Sanderson, S.C., Kaphingst, K.A.: The behavioral response to personalized genetic information: will genetic risk profiles motivate individuals and families to choose more healthful behaviors? Annu. Rev. Public Health 31, 89–103 (2010). doi:10.1146/annurev.publhealth.012809.103532

    Article  PubMed  Google Scholar 

  24. Ten Bosch, John, R., Grody, W.W.: Keeping up with the next generation: massively parallel sequencing in clinical diagnostics. J Mol. Diagn JMD 10(6), 484–492 (2008). doi:10.2353/jmoldx.2008.080027

    Article  CAS  PubMed  Google Scholar 

  25. National Human Genome Research Institute: The Human Genome Project Completion: Frequently Asked Questions (2010). https://www.genome.gov/11006943. Assessed 17 July 2015

  26. Wetterstrand, K.A.: DNA sequencing costs: data from the NHGRI Genome Sequencing Program. http://www.genome.gov/sequencingcosts. Assessed 13 January 2015

  27. Collins, F.: Has the revolution arrived? Nature 464(7289), 674–675 (2010). doi:10.1038/464674a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hayden, E.C.: Technology: the $1,000 genome nature. Nature 507(7492), 294–295 (2014). doi:10.1038/507294a

    Article  PubMed  Google Scholar 

  29. Service, R.F.: Gene sequencing. The race for the $1000 genome. Science (New York, N.Y.) 311(5767), 1544–1546 (2006). doi:10.1126/science.311.5767.1544

    Article  Google Scholar 

  30. Frank, M., Prenzler, A., Eils, R., Graf von der Schulenburg, J-M.: Genome sequencing: a systematic review of health economic evidence. Health economics review 3(1), 29 (2013). doi: 10.1186/2191-1991-3-29

  31. Götze, U., Northcott, D., Schuster, P.: Investment appraisal. Methods and models. Springer texts in business and economics

  32. Illumina, Inc.: cBot (2015). http://www.illumina.com/products/cbot.html. Assessed 17 March 2015

  33. Holt, R.A., Jones, Steven J M: The new paradigm of flow cell sequencing. Genome research 18(6), 839–846 (2008). doi:10.1101/gr.073262.107

  34. QIAGEN: QIAamp DNA Blood Mini Kit (2016). https://www.qiagen.com/de/shop/sample-technologies/dna/dna-preparation/qiaamp-dna-blood-mini-kit#orderinginformation. Assessed 01 March 2016

  35. Meynert, A.M., Ansari, M., FitzPatrick, D.R., Taylor, M.S.: Variant detection sensitivity and biases in whole genome and exome sequencing. BMC Bioinfo. 15, 247 (2014). doi:10.1186/1471-2105-15-247

    Article  Google Scholar 

  36. Dewey, F.E., Pan, S., Wheeler, M.T., Quake, S.R., Ashley, E.A.: DNA sequencing: clinical applications of new DNA sequencing technologies. Circulation 125(7), 931–944 (2012). doi:10.1161/CIRCULATIONAHA.110.972828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schlötterer, C., Tobler, R., Kofler, R., Nolte, V.: Sequencing pools of individuals - mining genome-wide polymorphism data without big funding. Nat. Rev. Genet. 15(11), 749–763 (2014). doi:10.1038/nrg3803

    Article  PubMed  Google Scholar 

  38. Kofler, R., Schlötterer, C.: A guide for the design of evolve and resequencing studies. Mol. Biol. Evol. 31(2), 474–483 (2014). doi:10.1093/molbev/mst221

    Article  CAS  PubMed  Google Scholar 

  39. McCourt, C.M., McArt, D.G., Mills, K., Catherwood, M.A., Maxwell, P., Waugh, D.J., Hamilton, P., O’Sullivan, J.M., Salto-Tellez, M.: Validation of next generation sequencing technologies in comparison to current diagnostic gold standards for BRAF, EGFR and KRAS mutational analysis. PLoS One 8(7), e69604 (2013). doi:10.1371/journal.pone.0069604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Karow, J.: In Sequence 2013 Survey: Illumina Pulls Further Ahead, Interest in Oxford Nanopore Remains High (2014)

  41. Studt, T,: Innovations Drive Rapid NGS Growth. Lower costs, high throughput and enhanced accuracies provide next-generation sequencing users with enhanced medical information. (2015)

  42. PHG Foundation: PHG Foundation: Next steps in the sequence. The implications of whole genome sequencing for health in the UK, Cambridge (2011). http://www.phgfoundation.org/file/10363/. Assessed 23 April 2015

  43. National Human Genome Research Institute: Genetic Discrimination (2014). http://www.genome.gov/10002077. Accessed 23 April 2015

  44. American Society of Clinical Oncology policy statement update: Genetic testing for cancer susceptibility. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 21(12), 2397–2406 (2003). doi:10.1200/JCO.2003.03.189

    Article  Google Scholar 

  45. Statement of the ESHG on direct-to-consumer genetic testing for health-related purposes. European journal of human genetics: EJHG 18(12), 1271–1273 (2010). doi:10.1038/ejhg.2010.129

Download references

Acknowledgments

We thank the German Cancer Research Center (DKFZ), Heidelberg; Illumina Inc., San Diego, CA, USA; Hanover Medical School (MHH); German Faculty of Mathematics and Computer Science Chair of RNA Bioinformatics and High Throughput Analysis at the Friedrich-Schiller-University, Jena; Max Planck Institute, Berlin; Center for Human Bioinformatics, Heidelberg; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart; Bernhard Nocht Institute for Tropical Medicine, Hamburg; Helmholtz Centre, Munich; Bioinformatics and System Biology Justus Department at the Liebig-University Gießen; and the Institute for Biochemistry, Biotechnology and Bioinformatics at the Technical University of Braunschweig and BioNTech RNA Pharmaceuticals GmbH for their valuable information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marika Plöthner.

Appendix

Appendix

See Tables 5, 6.

Table 5 Effects of workload differentiation at a 30-times coverage
Table 6 Effects of coverage differentiation at a platform utilization of 80 %

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plöthner, M., Frank, M. & von der Schulenburg, JM.G. Cost analysis of whole genome sequencing in German clinical practice. Eur J Health Econ 18, 623–633 (2017). https://doi.org/10.1007/s10198-016-0815-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10198-016-0815-0

Keywords

Navigation