Skip to main content
Log in

Local influence analysis in general spatial models

  • Original Paper
  • Published:
AStA Advances in Statistical Analysis Aims and scope Submit manuscript

Abstract

We study the local influence in the general spatial model which includes the spatial autoregressive model and the spatial error model as two special cases. The stepwise local influence procedure is employed in our diagnostic analysis. We derive the local diagnostic measures in the general spatial model under three perturbation schemes, namely, the variance perturbation, dependent variable perturbation and explanatory variable perturbation schemes. A simulation example and two real-data examples are analysed in detail and they show that the stepwise local influence analysis is effective in identifying influential observations and is a powerful tool for uncovering masking effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anselin, L.: Spatial econometrics: methods and models. Kluwer Academic Publishers, The Netherlands (1988)

    Book  MATH  Google Scholar 

  • Beckman, R.J., Nachtsheim, C.J., Cook, R.D.: Diagnostics for mixed-model analysis. Technometrics 29, 413–426 (1987)

    MathSciNet  MATH  Google Scholar 

  • Christensen, R., Johnson, W., Pearson, L.M.: Prediction diagnostics for spatial linear models. Biometrika 79(3), 583–591 (1992)

    Article  MATH  Google Scholar 

  • Cook, R.D.: Assessment of local influence. J. R. Stat. Soc. B 48, 133–169 (1986)

    MathSciNet  MATH  Google Scholar 

  • Cook, R.D., Weisberg, S.: Residuals and influence in regression. Chapman and Hall, New York (1982)

    MATH  Google Scholar 

  • Fernández, C., Ley, E., Steel, M.F.J.: Model uncertainty in cross-country growth regressions. J. Appl. Econ. 16, 563–576 (2001)

    Article  Google Scholar 

  • Haining, R.: Diagnostics for regression modeling in spatial econometrics. J. Reg. Sci. 34, 325–341 (1994)

    Article  Google Scholar 

  • Jin, L., Dai, X., Shi, A., Shi, L.: Detection of outliers in mixed regressive-spatial autoregressive models. Communications in statistics-theory and methods (2015, Accepted)

  • Lawrance, A.J.: Regression transformation diagnostics using local influence. J. Am. Stat. Assoc. 83, 1067–1072 (1988)

    Article  MathSciNet  Google Scholar 

  • LeSage, J.P.: The theory and practice of spatial econometrics. University of Toledo, Toledo (1999)

    Google Scholar 

  • LeSage, J.P., Pace, R.K.: Introduction to Spatial Econometrics. Chapman & Hall/CRC (2009)

  • Liu, S., Ma, T., Polasek, W.: Spatial system estimators for panel models: a sensitivity and simulation study. Math. Comput. Simul. 101, 78–102 (2014)

    Article  MathSciNet  Google Scholar 

  • Liu, S., Polasek, W., Sellner, R.: Sensitivity analysis of SAR estimators: a numerical approximation. J. Stat. Comput. Simul. 82, 325–342 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Lu, J., Shi, L., Chen, F.: Outlier detection in time series models using local influence method. Commun. Stat. Theory Methods 41, 2202–2220 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Paula, G.A., Leiva, V., Barros, M., Liu, S.: Robust statistical modeling using Birnbaum-Saunders-t distribution applied to insurance. Appl. Stoch. Models Bus. Ind. 28, 16–34 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Poon, W.Y., Poon, Y.S.: Conformal normal curvature and assessment of local influence. J. R. Stat. Soc. B 61, 51–61 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Sala-i-Martin, X.: I just ran two million regressions. Am. Econ. Rev. 87, 178–183 (1997)

    Google Scholar 

  • Shi, L.: Local influence in principal component analysis. Biometrika 84, 175–186 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Shi, L., Huang, M.: Stepwise local influence analysis. Comput. Stat. Data Anal. 55, 973–982 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Shi, L., Ojeda, M.M.: Local influence in multilevel regression for growth curve. J. Multivar. Anal. 91, 282–304 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Shi, L., Rahmana, M.M., Gan, W., Zhao, J.: Stepwise local influence in generalized autoregressive conditional heteroskedasticity models. J. Appl. Stat. 42, 428–444 (2015)

    Article  MathSciNet  Google Scholar 

  • Thomas, W., Cook, R.D.: Assessing influence on prediction from generalized linear models. Technometrics 32, 59–65 (1990)

    Article  MathSciNet  Google Scholar 

  • Wu, X.Z., Luo, Z.: Second-order approach to local influence. J. R. Stat. Soc. B 55, 929–936 (1993)

    MATH  Google Scholar 

  • Zhu, H.T., Lee, S.Y.: Local influence for incomplete data models. J. R. Stat. Soc. B 63, 111–126 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, F.K., Shi, L., Liu, S.: Influence diagnostics in log-linear integer-valued GARCH models. AStA Adv. Stat. Anal. 99(3), 311–335 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are very grateful to the editor, an AE and two reviewers for their constructive comments which led to an improved version of the manuscript. Shi’s work is supported by National Natural Science Foundation of China (Nos. 11161053, 11361071) and Key Project of NSFC (Yunnan Joint Project) (No. U1302267).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Shi.

Appendix: Proofs

Appendix: Proofs

1.1 1.   Proof of equation (15)

Using Eq. (10), we have

$$\begin{aligned} \frac{\partial ^{2}{L}}{\partial {\rho }\partial {\rho }}|_{\omega =\mathbf {1}_{n}}&=-tr(C_{1}^{2})-\frac{1}{\sigma ^{2}}y^TW^T_{1}B^TBW_{1}y\\ \frac{\partial ^{2}{L}}{\partial {\rho }\partial {\lambda }}|_{\omega =\mathbf {1}_{n}}&=\frac{\partial ^{2}{L}}{\partial {\lambda }\partial {\rho }}|_{\omega =\mathbf {1}_{n}} =-\frac{1}{\sigma ^{2}}e^TW^T_{2}BW_{1}y-\frac{1}{\sigma ^{2}}e^TB^TW_{2}W_{1}y\\ \frac{\partial ^{2}{L}}{\partial {\rho }\partial {\sigma ^{2}}}|_{\omega =\mathbf {1}_{n}}&=\frac{\partial ^{2}{L}}{\partial {\sigma ^{2}}\partial {\rho }}|_{\omega =\mathbf {1}_{n}} =-\frac{1}{\sigma ^{4}}e^TB^TBW_{1}y\\ \frac{\partial ^{2}{L}}{\partial {\rho }\partial {\beta ^T}}|_{\omega =\mathbf {1}_{n}}&=\left( \frac{\partial ^{2}{L}}{\partial {\beta }\partial {\rho }}\right) ^T|_{\omega =\mathbf {1}_{n}} =-\frac{1}{\sigma ^{2}}y^TW^T_{1}B^TBX\\ \frac{\partial ^{2}{L}}{\partial {\lambda }\partial {\lambda }}|_{\omega =\mathbf {1}_{n}}&=-tr(C_{2}^{2})-\frac{1}{\sigma ^{2}}e^TW^T_{2}W_{2}e,\ \frac{\partial ^{2}{L}}{\partial {\lambda }\partial {\sigma ^{2}}}|_{\omega =\mathbf {1}_{n}} =\frac{\partial ^{2}{L}}{\partial {\sigma ^{2}}\partial {\lambda }}|_{\omega =\mathbf {1}_{n}}\\&=-\frac{1}{\sigma ^{4}}e^TB^TW_{2}e\\ \frac{\partial ^{2}{L}}{\partial {\lambda }\partial {\beta ^T}}|_{\omega =\mathbf {1}_{n}}&=\left( \frac{\partial ^{2}{L}}{\partial {\beta }\partial {\lambda }}\right) ^T|_{\omega =\mathbf {1}_{n}} =-\frac{1}{\sigma ^{2}}e^TB^TW_{2}X-\frac{1}{\sigma ^{2}}e^TW^T_{2}BX\\ \frac{\partial ^{2}{L}}{\partial {\sigma ^{2}}\partial {\sigma ^{2}}}|_{\omega =\mathbf {1}_{n}}&=\frac{n}{2\sigma ^{4}}-\frac{1}{\sigma ^{6}}e^TB^TBe, \ \frac{\partial ^{2}{L}}{\partial {\beta }\partial {\beta ^T}}|_{\omega =\mathbf {1}_{n}} =-\frac{X^TB^TBX}{\sigma ^{2}}\\ \frac{\partial ^{2}{L}}{\partial {\sigma ^{2}}\partial {\beta ^T}}|_{\omega =\mathbf {1}_{n}}&=\left( \frac{\partial ^{2}{L}}{\partial {\beta }\partial {\sigma ^{2}}}\right) ^T|_{\omega =\mathbf {1}_{n}} =-\frac{1}{\sigma ^{4}}e^TB^TBX \end{aligned}$$

where \(C_{1}=W_{1}A^{-1}\), \(C_{2}=W_{2}B^{-1}\), \(e=Ay-X\beta \), \(A=I_{n}-\rho W_{1}\), \(B=I_{n}-\lambda W_{2}\). From (3) and (4), we have the following equivalent relations:

$$\begin{aligned}&tr({\hat{C}}_{1})=\frac{\displaystyle {1}}{\displaystyle {{\hat{\sigma }}^{2}}}{\hat{e}}^T{\hat{V}}W_{1}y,\quad {\hat{\sigma }}^{2}=\frac{\displaystyle {1}}{\displaystyle {n}}{\hat{e}}^T{\hat{V}}{\hat{e}},\quad \end{aligned}$$
(20)
$$\begin{aligned}&tr({\hat{C}}_{2})=\frac{\displaystyle {1}}{\displaystyle {{\hat{\sigma }}^{2}}}{\hat{e}}^T{\hat{B}}^TW_{2}{\hat{e}},\quad X^T{\hat{V}}{\hat{e}}=\mathbf {0}. \end{aligned}$$
(21)

where \({\hat{V}}={\hat{B}}^T{\hat{B}}\), \({\hat{C}}_{1}=W_{1}{\hat{A}}^{-1}\), \({\hat{C}}_{2}=W_{2}{\hat{B}}^{-1}\), \({\hat{e}}={\hat{A}}y-X{\hat{\beta }}\), \({\hat{A}}=I_{n}-\hat{\rho } W_{1}\) and \({\hat{B}}=I_{n}-\hat{\lambda } W_{2}\). Therefore matrix \(\ddot{L}\) defined in Eq. (5) can be obtained to be

$$\begin{aligned} \ddot{L}=-\frac{1}{{\hat{\sigma }}^{2}}\cdot \begin{pmatrix} {\hat{\sigma }}^{2}tr({\hat{C}}_{1}^{2})+{\hat{\eta }}^T_{1}{\hat{\eta }}_{1} &{}\quad {\hat{\eta }}^T_{1}{\hat{\eta }}_{2} &{}\quad tr({\hat{C}}_{1}) &{}\quad {\hat{\eta }}^T_{1}{\hat{B}}X\\ {\hat{\eta }}^T_{1}{\hat{\eta }}_{2} &{}\quad {\hat{\sigma }}^{2}tr({\hat{C}}_{2}^{2})+{\hat{e}}^TW^T_{2}W_{2}{\hat{e}} &{}\quad tr({\hat{C}}_{2}) &{}\quad {\hat{\eta }}^T_{2}{\hat{B}}X\\ tr({\hat{C}}_{1}) &{}\quad tr({\hat{C}}_{2}) &{}\quad \frac{\displaystyle {n}}{\displaystyle {2{\hat{\sigma }}^{2}}} &{}\quad \mathbf {0}\\ X^T{\hat{B}}^T{\hat{\eta }}_{1} &{} X^T{\hat{B}}^T{\hat{\eta }}_{2} &{}\quad \mathbf {0} &{}\quad X^T{\hat{V}}X \end{pmatrix}, \end{aligned}$$
(22)

where \({\hat{\eta }}_{1}={\hat{B}}W_{1}y\), \({\hat{\eta }}_{2}={\hat{B}}^{T-1}({\hat{B}}^TW_{2} +W^T_{2}{\hat{B}}){\hat{e}}\).

1.2 2.   Proof of Theorem 1 (I)

Using Eq. (10), we have

$$\begin{aligned}&\frac{\partial ^{2}{L}}{\partial {\rho }\partial {\omega _{i}}}|_{\omega =\mathbf {1}_{n}} =\frac{1}{\sigma ^{2}}d^T_{i}Be\cdot d^T_{i}BW_{1}y, \ \ i=1,2,\ldots ,n \\&\frac{\partial ^{2}{L}}{\partial {\lambda }\partial {\omega _{i}}}|_{\omega =\mathbf {1}_{n}} =\frac{1}{\sigma ^{2}}d^T_{i}Be\cdot d^T_{i}W_{2}e, \ \ i=1,2,\ldots ,n \\&\frac{\partial ^{2}{L}}{\partial {\sigma ^{2}}\partial {\omega _{i}}}|_{\omega =\mathbf {1}_{n}} =\frac{(d^T_{i}Be)^{2}}{2\sigma ^{4}}, \ \ \frac{\partial ^{2}{L}}{\partial {\beta }\partial {\omega _{i}}}|_{\omega =\mathbf {1}_{n}} =\frac{1}{\sigma ^{2}}d^T_{i}Be\cdot X^TB^Td_{i}, \ \ i=1,2,\ldots ,n \end{aligned}$$

where \(\omega _{i}\) represents the ith element of \(\omega \) for \(i=1,2,\ldots ,n\). By the definition, we immediately obtain the form of \(\Delta \) as given in Theorem 1 (I).

1.3 3.   Proof of Theorem 1 (II)

Using Eq. (12), we have

$$\begin{aligned}&\frac{\partial ^{2}{L}}{\partial {\rho }\partial {\omega ^{T}}}|_{\omega =\mathbf {0}_{n}} =\frac{1}{\sigma ^{2}}\left( e^TB^TBW_{1}+y^TW^T_{1}B^TBA\right) \\&\frac{\partial ^{2}{L}}{\partial {\lambda }\partial {\omega ^{T}}}|_{\omega =\mathbf {0}_{n}} =\frac{1}{\sigma ^{2}}\left( e^TW^T_{2}BA+e^TB^TW_{2}A\right) \\&\frac{\partial ^{2}{L}}{\partial {\sigma ^{2}}\partial {\omega ^{T}}}|_{\omega =\mathbf {0}_{n}} =\frac{\displaystyle {e^TB^TBA}}{\displaystyle {\sigma ^{4}}},\quad \frac{\partial ^{2}{L}}{\partial {\beta }\partial {\omega ^{T}}}|_{\omega =\mathbf {0}_{n}} =\frac{1}{\sigma ^{2}}X^TB^TBA, \end{aligned}$$

which immediately result in Theorem 1 (II).

1.4 4.   Proof of Theorem 1 (III)

Using Eq. (14), we have

$$\begin{aligned}&\frac{\partial ^{2}{L}}{\partial {\rho }\partial {\omega ^{T}}}|_{\omega =\mathbf {0}_{n}} =-\frac{1}{\sigma ^{2}}l^T_{p}\beta \cdot y^TW^T_{1}B^TB \\&\frac{\partial ^{2}{L}}{\partial {\lambda }\partial {\omega ^{T}}}|_{\omega =\mathbf {0}_{n}} =-\frac{1}{\sigma ^{2}}l^T_{p}\beta \cdot \left( e^TW^T_{2}B+e^TB^TW_{2}\right) \\&\frac{\partial ^{2}{L}}{\partial {\sigma ^{2}}\partial {\omega ^{T}}}|_{\omega =\mathbf {0}_{n}} =-\frac{\displaystyle {1}}{\displaystyle {\sigma ^{4}}}l^T_{p}\beta \cdot e^TB^TB\\&\frac{\partial ^{2}{L}}{\partial {\beta }\partial {\omega ^{T}}}|_{\omega =\mathbf {0}_{n}} =\frac{1}{\sigma ^{2}}\left( l_{p}e^TB^TB-l^T_{p}\beta \cdot X^TB^TB\right) \end{aligned}$$

where \(l_{p}\) is a \(k\times 1\) vector with the pth element equal to 1 and the rest equal to 0. Thus, \(\Delta \) given in Theorem 1 (III) can be easily obtained.

1.5 5. Matlab code for computing diagnostics

Following is a function used to calculate the local diagnostic in stepwise local influence analysis. The method refers to Sect. 3.2 or Shi and Huang (2011).

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, X., Jin, L., Shi, L. et al. Local influence analysis in general spatial models. AStA Adv Stat Anal 100, 313–331 (2016). https://doi.org/10.1007/s10182-015-0261-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10182-015-0261-9

Keywords

Navigation