Skip to main content
Log in

Influence diagnostics in log-linear integer-valued GARCH models

  • Original Paper
  • Published:
AStA Advances in Statistical Analysis Aims and scope Submit manuscript

Abstract

Integer-valued generalized autoregressive conditional heteroscedasticity (GARCH) models have played an important role in time series analysis of count data. To model negatively autocorrelated time series and to accommodate covariates without restrictions, the log-linear integer-valued GARCH model has recently been proposed as an alternative to the existing models. In this paper, we study a local influence diagnostic analysis in the log-linear integer-valued GARCH models. The slope-based diagnostic and stepwise curvature-based diagnostics in a framework of the modified likelihood displacement are proposed. Under five perturbation schemes the corresponding local influence measures are derived. Two simulated data sets and a real-world example are analyzed to illustrate our method. In addition, the fitted model for this example has a negative coefficient for one of the two covariates, which is particularly illustrative of the extra flexibility of the considered model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Atkinson, A.C.: Masking unmasked. Biometrika 73, 533–541 (1986)

    Article  MathSciNet  Google Scholar 

  • Balagh, A.K.G., Naderkhani, F., Makis, V.: Highway accident modeling and forecasting in winter. Transp. Res. Part A 59, 384–396 (2014)

    Google Scholar 

  • Brijs, T., Karlis, D., Wets, G.: Studying the effect of weather conditions on daily crash counts using a discrete time-series model. Accid. Anal. Prev. 40, 1180–1190 (2008)

    Article  Google Scholar 

  • Billor, N., Loynes, R.M.: Local influence: a new approach. Commun. Stat. Theory Methods 22, 1595–1611 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Bruce, A.G., Martin, R.D.: Leave-\(k\)-out diagnostics for time seres. J. Royal Stat. Soc. Ser. B 51, 363–424 (1989)

    MathSciNet  MATH  Google Scholar 

  • Cook, R.D.: Assessment of local influence. J. Royal Stat. Soc. Ser. B 48, 133–169 (1986)

    MATH  Google Scholar 

  • Dark, J., Zhang, X., Qu, N.: Influence diagnostics for multivariate GARCH processes. J. Time Ser. Anal. 31, 278–291 (2010)

    MathSciNet  MATH  Google Scholar 

  • Douc, R., Doukhan, P., Moulines, E.: Ergodicity of observation-driven time series models and consistency of the maximum likelihood estimator. Stoch. Process. Appl. 123, 2620–2647 (2013)

    Article  MathSciNet  Google Scholar 

  • Elsaied, H., Fried, R.: Robust fitting of INARCH models. J. Time Ser. Anal. 35, 517–535 (2014)

  • Ferland, R., Latour, A., Oraichi, D.: Integer-valued GARCH process. J. Time Ser. Anal. 27, 923–942 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Fokianos, K.: Count time series models. In: Subba Rao, T., Subba Rao, S., Rao, C.R. (eds.) Time Series Analysis: Methods and Applications. Handbook of Statistics, vol. 30, pp. 315–347. Elsevier, Amsterdam (2012)

  • Fokianos, K., Fried, R.: Interventions in log-linear Poisson autoregression. Stat. Model. 12, 299–322 (2012)

    Article  MathSciNet  Google Scholar 

  • Fokianos, K., Rahbek, A., Tjøstheim, D.: Poisson autoregression. J. Am. Stat. Assoc. 104, 1430–1439 (2009)

    Article  MATH  Google Scholar 

  • Fokianos, K., Tjøstheim, D.: Log-linear Poisson autoregression. J. Multivar. Anal. 102, 563–578 (2011)

    Article  MATH  Google Scholar 

  • Francq, C., Zakoïan, J.-M.: GARCH models: structure, statistical inference and financial applications. Wiley, Chichester (2010)

    Book  Google Scholar 

  • Lawrance, A.J.: Deletion influence and masking in regression. J. Royal Stat. Soc. Ser. B 57, 181–189 (1995)

    MathSciNet  MATH  Google Scholar 

  • Liu, S.: On diagnostics in conditionally heteroskedastic time series models under elliptical distributions. J. Appl. Prob. 41A, 393–405 (2004)

    Article  MATH  Google Scholar 

  • Lu, J., Shi, L., Chen, F.: Outlier detection in time series models using local influence method. Commun. Stat. Theory Methods 41, 2202–2220 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Pedeli, X., Karlis, D.: On composite likelihood estimation of a multivariate INAR(1) model. J. Time Ser. Anal. 34, 206–220 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Poon, W.Y., Poon, Y.S.: Conformal normal curvature and assessment of local influence. J. Royal Stat. Soc. Ser. B 61, 51–61 (1999)

    Article  MathSciNet  Google Scholar 

  • Schall, R., Dunne, T.T.: Diagnostics for regression-ARMA time series. In: Stahel, W., Weisberg, S. (eds.) Directions in Robust Statistics and Diagnostics (Part II), pp. 205–221. Springer, New York (1991)

    Chapter  Google Scholar 

  • Shi, L.: Local influence in principal components analysis. Biometrika 84, 175–186 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Shi, L., Huang, M.: Stepwise local influence analysis. Comput. Stat. Data Anal. 55, 973–982 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Tjøstheim, D.: Some recent theory for autoregressive count time series (with discussions). Test 21, 413–476 (2012)

    Article  MathSciNet  Google Scholar 

  • Wu, X., Luo, Z.: Second-order approach to local influence. J. Royal Stat. Soc. Ser. B 55, 929–936 (1993)

    MATH  Google Scholar 

  • Xekalaki, E., Degiannakis, S.: ARCH Models for Financial Applications. Wiley, Chichester (2010)

    Book  Google Scholar 

  • Ye, F., Garcia, T.P., Pourahmadi, M., Lord, D.: Extension of negative binomial GARCH model: analyzing effects of gasoline price and miles traveled on fatal crashes involving intoxicated drivers in Texas. Transp. Res. Record 2279, 31–39 (2012)

    Article  Google Scholar 

  • Zevallos, M., Hotta, L.K.: Influential observations in GARCH models. J. Stat. Comput. Simul. 82, 1571–1589 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, X.: Assessment of local influence in GARCH processes. J. Time Ser. Anal. 25, 301–313 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, X., King, M.L.: Influence diagnostics in generalized autoregressive conditional heteroscedasticity processes. J. Bus. Econ. Stat. 23, 118–129 (2005)

    Article  MathSciNet  Google Scholar 

  • Zhu, F.: A negative binomial integer-valued GARCH model. J. Time Ser. Anal. 32, 54–67 (2011)

    Article  MATH  Google Scholar 

  • Zhu, F.: Zero-inflated Poisson and negative binomial integer-valued GARCH models. J. Stat. Plan. Inference 142, 826–839 (2012a)

    Article  MATH  Google Scholar 

  • Zhu, F.: Modeling overdispersed or underdispersed count data with generalized Poisson integer-valued GARCH models. J. Math. Anal. Appl. 389, 58–71 (2012b)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, F.: Modeling time series of counts with COM-Poisson INGARCH models. Math. Comput. Model. 56, 191–203 (2012c)

    Article  MATH  Google Scholar 

  • Zhu, F., Li, Q., Wang, D.: A mixture integer-valued ARCH model. J. Stat. Plan. Inference 140, 2025–2036 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, F., Wang, D.: Diagnostic checking integer-valued ARCH\((p)\) models using conditional residual autocorrelations. Comput. Stat. Data Anal. 54, 496–508 (2010)

    Article  MATH  Google Scholar 

  • Zhu, F., Wang, D.: Estimation and testing for a Poisson autoregressive model. Metrika 73, 211–230 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, H.T., Lee, S.Y.: Local influence for incomplete data models. J. Royal Stat. Soc. Ser. B 63, 111–126 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are very grateful to three reviewers for valuable suggestions and comments which greatly improved the paper. We also would like to thank Dr. Fan Ye at Texas A&M University for providing the road crashes data. Zhu’s work is supported by National Natural Science Foundation of China (Nos. 11371168, 11271155), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20110061110003), Science and Technology Developing Plan of Jilin Province (No. 20130522102JH) and Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry. Shi’s work is supported by National Natural Science Foundation of China (Nos. 11161053, 11361071, 11261064) and Key Project of NSFC (Yunnan Joint Project) (No. U1302267).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Shi.

Appendices

Appendix 1. The first and second derivatives of \(\nu _t\)

$$\begin{aligned} \frac{\partial \nu _t}{\partial \alpha _0}&=1+\sum _{j=1}^q\beta _j\frac{\partial \nu _{t-j}}{\partial \alpha _0},\\ \frac{\partial \nu _t}{\partial \alpha _i}&=\log (X_{t-i}+1)+\sum _{j=1}^q\beta _j\frac{\partial \nu _{t-j}}{\partial \alpha _i},~~~i=1,\ldots ,p,\\ \frac{\partial \nu _t}{\partial \beta _j}&=\nu _{t-j}+\sum _{m=1}^q\beta _m\frac{\partial \nu _{t-m}}{\partial \beta _j},~~~j=1,\ldots ,q,\\ \frac{\partial \nu _t}{\partial \gamma _s}&=C_{t,s}+\sum _{j=1}^q\beta _j\frac{\partial \nu _{t-j}}{\partial \gamma _s},~~~s=1,\ldots ,r,\\ \frac{\partial ^2\nu _t}{\partial \alpha _i\partial \alpha _{i^*}}&=0,~~~i, i^*=0,1,\ldots ,p,\\ \frac{\partial ^2\nu _t}{\partial \alpha _i\partial \beta _j}&=\frac{\partial \nu _{t-j}}{\partial \alpha _i}+\sum _{m=1}^q\beta _m\frac{\partial ^2\nu _{t-m}}{\partial \alpha _i\partial \beta _j},~~~i=0,1,\ldots ,p,j=1,\ldots ,q,\\ \frac{\partial ^2\nu _t}{\partial \beta _j\partial \beta _{j^*}}&=\frac{\partial \nu _{t-j}}{\partial \beta _{j^*}}+\frac{\partial \nu _{t-{j^*}}}{\partial \beta _j}+\sum _{m=1}^q\beta _m\frac{\partial ^2\nu _{t-m}}{\partial \beta _j\partial \beta _{j^*}},~~~j,j^*=1,\ldots ,q.\\ \frac{\partial ^2\nu _t}{\partial \alpha _i\partial \gamma _s}&=0,~~~i=0,1,\ldots ,p,s=1,\ldots ,r,\\ \frac{\partial ^2\nu _t}{\partial \beta _j\partial \gamma _s}&=\frac{\partial \nu _{t-j}}{\partial \gamma _s},~~~j=1,\ldots ,q,s=1,\ldots ,r,\\ \frac{\partial ^2\nu _t}{\partial \gamma _s\partial \gamma _{s^*}}&=0,~~~s,s^*=0,1,\ldots ,r. \end{aligned}$$

We obtain \(\partial \nu _t/\partial \theta \) and \(\partial ^2\nu _t/\partial \theta \partial \theta ^\top \) from above equations, and then obtain \(\partial ^2l_t(\theta )/\partial \theta \partial \theta ^\top \) with \(\partial ^2l_t(\theta )/\partial \theta _k\partial \theta _l\) given in (4) as the \((k,l)\)-th element.

Appendix 2. The required derivatives in Sect. 4.3

$$\begin{aligned} \frac{\partial l(\theta |\omega )}{\partial \omega }&=\sum _{t=1}^n(X_t-\exp (\nu _t))\frac{\partial \nu _t}{\partial \omega },\\ \frac{\partial ^2l(\theta |\omega )}{\partial \theta \partial \omega ^\top }&=\sum _{t=1}^n\left[ (X_t-\exp (\nu _t))\frac{\partial ^2\nu _t}{\partial \theta \partial \omega ^\top }-\exp (\nu _t)\frac{\partial \nu _t}{\partial \theta }\frac{\partial \nu _t}{\partial \omega ^\top }\right] ,\\ \frac{\partial ^2l(\theta |\omega )}{\partial \omega \partial \omega ^\top }&=-\sum _{t=1}^n\exp (\nu _t)\frac{\partial \nu _t}{\partial \omega }\frac{\partial \nu _t}{\partial \omega ^\top },\\ \frac{\partial ^2l(\theta |\omega )}{\partial \theta \partial \theta ^\top }&=\sum _{t=1}^n\left[ (X_t-\exp (\nu _t))\frac{\partial ^2\nu _t}{\partial \theta \partial \theta ^\top }-\exp (\nu _t)\frac{\partial \nu _t}{\partial \theta }\frac{\partial \nu _t}{\partial \theta ^\top }\right] , \end{aligned}$$

where

$$\begin{aligned} \frac{\partial \nu _t}{\partial \omega }&=\frac{\partial \omega _t}{\partial \omega }+\sum _{j=1}^q\beta _j\frac{\partial \nu _{t-j}}{\partial \omega },\\ \frac{\partial ^2\nu _t}{\partial \alpha _i\partial \omega ^\top }&=0,~~~i=0,1,\ldots ,p,\\ \frac{\partial ^2\nu _t}{\partial \beta _j\partial \omega ^\top }&=\frac{\partial \nu _{t-j}}{\partial \omega ^\top }+\sum _{m=1}^q\beta _m\frac{\partial ^2\nu _{t-m}}{\partial \beta _j\partial \omega ^\top },~~~j=1,\ldots ,q,\\ \frac{\partial ^2\nu _t}{\partial \gamma _s\partial \omega ^\top }&=0,~~~s=1,\ldots ,r, \end{aligned}$$

\(\partial \nu _t/\partial \theta \) and \(\partial ^2\nu _t/\partial \theta \partial \theta ^\top \) are given in Appendix 1, and

$$\begin{aligned} \frac{\partial \omega _t}{\partial \omega }=(0,\ldots ,0,1,0,\ldots ,0)^\top \hbox {with 1 in the }t\hbox {-th position}. \end{aligned}$$

These derivatives will be evaluated at \(\theta =\hat{\theta }\) and \(\omega =\omega _0\).

Appendix 3. The required derivatives in Sect. 4.5

$$\begin{aligned} \frac{\partial l(\theta |\omega )}{\partial \omega }=&\sum _{t=1}^n\left[ (\nu _t-\psi (X_t+1+\omega _t))\frac{\partial \omega _t}{\partial \omega }+(X_t+\omega _t-\exp (\nu _t))\frac{\partial \nu _t}{\partial \omega }\right] ,\\ \frac{\partial ^2l(\theta |\omega )}{\partial \theta \partial \omega ^\top }=&\sum _{t=1}^n\left[ \frac{\partial \nu _t}{\partial \theta }\frac{\partial \omega _t}{\partial \omega ^\top }-\exp (\nu _t)\frac{\partial \nu _t}{\partial \theta }\frac{\partial \nu _t}{\partial \omega ^\top }+(X_t+\omega _t-\exp (\nu _t))\frac{\partial ^2\nu _t}{\partial \theta \partial \omega ^\top }\right] ,\\ \frac{\partial ^2l(\theta |\omega )}{\partial \omega \partial \omega ^\top }=&\sum _{t=1}^n\left[ \left( \frac{\partial \omega _t}{\partial \omega }\frac{\partial \nu _t}{\partial \omega ^\top }+\frac{\partial \nu _t}{\partial \omega }\frac{\partial \omega _t}{\partial \omega ^\top }\right) -\exp (\nu _t)\frac{\partial \nu _t}{\partial \omega }\frac{\partial \nu _t}{\partial \omega ^\top }\right. \\&~~~+\left. (X_t+\omega _t-\exp (\nu _t))\frac{\partial ^2\nu _t}{\partial \omega \partial \omega ^\top }-\psi '(X_t+1+\omega _t)\frac{\partial \omega _t}{\partial \omega }\frac{\partial \omega _t}{\partial \omega ^\top }\right] ,\\ \frac{\partial ^2l(\theta |\omega )}{\partial \theta \partial \theta ^\top }=&\sum _{t=1}^n\left[ (X_t+\omega _t-\exp (\nu _t))\frac{\partial ^2\nu _t}{\partial \theta \partial \theta ^\top }-\exp (\nu _t)\frac{\partial \nu _t}{\partial \theta }\frac{\partial \nu _t}{\partial \theta ^\top }\right] , \end{aligned}$$

where

$$\begin{aligned} \frac{\partial \nu _t}{\partial \omega }&=\sum _{i=1}^p\frac{\alpha _i}{X_{t-i}+1+\omega _{t-i}}\frac{\partial \omega _{t-i}}{\partial \omega }+\sum _{j=1}^q\beta _j\frac{\partial \nu _{t-j}}{\partial \omega },\\ \frac{\partial ^2\nu _t}{\partial \alpha _0\partial \omega ^\top }&=0,\\ \frac{\partial ^2\nu _t}{\partial \alpha _i\partial \omega ^\top }&=\frac{1}{X_{t-i}+1+\omega _{t-i}}\frac{\partial \omega _{t-i}}{\partial \omega ^\top }+\sum _{j=1}^q\beta _j\frac{\partial ^2\nu _{t-j}}{\partial \alpha _i\partial \omega ^\top },~~~i=1,\ldots ,p,\\ \frac{\partial ^2\nu _t}{\partial \beta _j\partial \omega ^\top }&=\frac{\partial \nu _{t-j}}{\partial \omega ^\top }+\sum _{m=1}^q\beta _m\frac{\partial ^2\nu _{t-m}}{\partial \beta _j\partial \omega ^\top },~~~j=1,\ldots ,q,\\ \frac{\partial ^2\nu _t}{\partial \gamma _s\partial \omega ^\top }&=0,~~~s=1,\ldots ,r,\\ \frac{\partial ^2\nu _t}{\partial \omega \partial \omega ^\top }&=-\sum _{i=1}^p\frac{\alpha _i}{(X_{t-i}+1+\omega _{t-i})^2}\frac{\partial \omega _{t-i}}{\partial \omega }\frac{\partial \omega _{t-i}}{\partial \omega ^\top }+\sum _{j=1}^q\beta _j\frac{\partial ^2\nu _{t-j}}{\partial \omega \partial \omega ^\top },\\ \frac{\partial \nu _t}{\partial \alpha _i}&=\log (X_{t-i}+1+\omega _{t-i})+\sum _{j=1}^q\beta _j\frac{\partial \nu _{t-j}}{\partial \alpha _i},~~~i=1,\ldots ,p, \end{aligned}$$

\(\partial \nu _t/\partial \alpha _0,\partial \nu _t/\partial \beta _j(j=1,\ldots ,q)\) and \(\partial ^2\nu _t/\partial \theta \partial \theta ^\top \) are given in Appendix 1, \(\psi (x)=\mathrm{d}\log \Gamma (x)/\mathrm{d}x=(\mathrm{d}\Gamma (x)/\mathrm{d}x)/\Gamma (x)\) is the digamma function, \(\psi '(x)\) is the first derivative of \(\psi (x)\) and is known as the trigamma function. These derivatives will be evaluated at \(\theta =\hat{\theta }\) and \(\omega =\omega _0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, F., Shi, L. & Liu, S. Influence diagnostics in log-linear integer-valued GARCH models. AStA Adv Stat Anal 99, 311–335 (2015). https://doi.org/10.1007/s10182-014-0242-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10182-014-0242-4

Keywords

Mathematical Subject Classification

Navigation