Skip to main content

Advertisement

Log in

Peroxisome proliferator-activated receptor gamma in osteoarthritis

  • Review Article
  • Published:
Modern Rheumatology

Abstract

Osteoarthritis (OA) is among the most prevalent chronic human health disorders and the most common form of arthritis. It is a leading cause of disability in developed countries. This disease is characterized by cartilage deterioration, synovitis, and remodeling of the subchondral bone. There is not yet a satisfactory treatment to stop or arrest this disease process. Although several candidates for therapeutic approaches have been put forward, recent studies suggest that activation of the transcription factor peroxisome proliferator-activated receptor gamma (PPARγ) is an interesting target for this disease. PPARγ is a ligand-activated transcription factor and member of the nuclear receptor superfamily. Agonists of PPARγ inhibit inflammation and reduce synthesis of cartilage degradation products both in vitro and in vivo, and reduce the development/progression of cartilage lesions in OA animal models. This review will highlight the recent experimental studies on the presence of PPARγ in articular tissues and its effect on inflammatory and catabolic responses in chondrocytes and synovial fibroblasts, as well as the protective effects of PPARγ ligands in arthritis experimental models. Finally, the role of PPARγ polymorphism in the pathogenesis of OA and related musculoskeletal diseases will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martel-Pelletier J, Lajeunesse D, Pelletier JP. Etiopathogenesis of osteoarthritis. In: Koopman WJ, Moreland LW, editors. Arthritis and allied conditions. a textbook of rheumatology. Baltimore: Lippincott, Williams & Wilkins; 2005. p. 2199–226.

    Google Scholar 

  2. Martel-Pelletier J, Boileau C, Pelletier J-P, Roughley P. Cartilage in normal and osteoarthritis conditions. In: Pap T, editor. Best practice and research clinical rheumatology. East Sussex: Rapid Medical Media; 2008. p. 351–84.

    Google Scholar 

  3. Pelletier JP, Martel-Pelletier J, Abramson SB. Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets. Arthritis Rheum. 2001;44:1237–47.

    Article  CAS  PubMed  Google Scholar 

  4. Abbott BD. Review of the expression of peroxisome proliferator-activated receptors alpha (PPAR alpha), beta (PPAR beta), and gamma (PPAR gamma) in rodent and human development. Reprod Toxicol. 2009;27:246–57.

    Article  CAS  PubMed  Google Scholar 

  5. Fruchart JC. Peroxisome proliferator-activated receptor-alpha (PPARalpha): at the crossroads of obesity, diabetes and cardiovascular disease. Atherosclerosis. 2009;205:1–8.

    Article  CAS  PubMed  Google Scholar 

  6. Michalik L, Wahli W. Peroxisome proliferator-activated receptors (PPARs) in skin health, repair and disease. Biochim Biophys Acta. 2007;1771:991–8.

    CAS  PubMed  Google Scholar 

  7. Hall MG, Quignodon L, Desvergne B. Peroxisome proliferator-activated receptor beta/delta in the brain: facts and hypothesis. PPAR Res. 2008;2008:780452.

    CAS  PubMed  Google Scholar 

  8. Zhu Y, Qi C, Korenberg JR, Chen XN, Noya D, Rao MS, et al. Structural organization of mouse peroxisome proliferator-activated receptor gamma (mPPAR gamma) gene: alternative promoter use and different splicing yield two mPPAR gamma isoforms. Proc Natl Acad Sci USA. 1995;92:7921–5.

    Article  CAS  PubMed  Google Scholar 

  9. Fajas L, Auboeuf D, Raspe E, Schoonjans K, Lefebvre AM, Saladin R, et al. The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem. 1997;272:18779–89.

    Article  CAS  PubMed  Google Scholar 

  10. Cho MC, Lee K, Paik SG, Yoon DY. Peroxisome proliferators-activated receptor (PPAR) modulators and metabolic disorders. PPAR Res. 2008;2008:679137.

    PubMed  Google Scholar 

  11. Takano H, Komuro I. Peroxisome proliferator-activated receptor gamma and cardiovascular diseases. Circ J. 2009;73:214–20.

    Article  CAS  PubMed  Google Scholar 

  12. Elrod HA, Sun SY. PPARgamma and apoptosis in cancer. PPAR Res. 2008;2008:704165.

    PubMed  Google Scholar 

  13. Szanto A, Nagy L. The many faces of PPARgamma: anti-inflammatory by any means? Immunobiology. 2008;213:789–803.

    Article  CAS  PubMed  Google Scholar 

  14. Kapoor M, Kojima F, Qian M, Yang L, Crofford LJ. Microsomal prostaglandin E synthase-1 deficiency is associated with elevated peroxisome proliferator-activated receptor gamma: regulation by prostaglandin E2 via the phosphatidylinositol 3-kinase and Akt pathway. J Biol Chem. 2007;282:5356–66.

    Article  CAS  PubMed  Google Scholar 

  15. Kapoor M, Kojima F, Yang L, Crofford LJ. Sequential induction of pro- and anti-inflammatory prostaglandins and peroxisome proliferators-activated receptor-gamma during normal wound healing: a time course study. Prostaglandins Leukot Essent Fatty Acids. 2007;76:103–12.

    Article  CAS  PubMed  Google Scholar 

  16. Kliewer SA, Lenhard JM, Willson TM, Patel I, Morris DC, Lehmann JM. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell. 1995;83:813–9.

    Article  CAS  PubMed  Google Scholar 

  17. Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell. 1998;93:229–40.

    Article  CAS  PubMed  Google Scholar 

  18. Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM. 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell. 1995;83:803–12.

    Article  CAS  PubMed  Google Scholar 

  19. Schopfer FJ, Lin Y, Baker PR, Cui T, Garcia-Barrio M, Zhang J, et al. Nitrolinoleic acid: an endogenous peroxisome proliferator-activated receptor gamma ligand. Proc Natl Acad Sci USA. 2005;102:2340–5.

    Article  CAS  PubMed  Google Scholar 

  20. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem. 1995;270:12953–6.

    Article  CAS  PubMed  Google Scholar 

  21. Cho N, Momose Y. Peroxisome proliferator-activated receptor gamma agonists as insulin sensitizers: from the discovery to recent progress. Curr Top Med Chem. 2008;8:1483–507.

    Article  CAS  PubMed  Google Scholar 

  22. Lehmann JM, Lenhard JM, Oliver BB, Ringold GM, Kliewer SA. Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem. 1997;272:3406–10.

    Article  CAS  PubMed  Google Scholar 

  23. Krentz AJ, Patel MB, Bailey CJ. New drugs for type 2 diabetes mellitus: what is their place in therapy? Drugs. 2008;68:2131–62.

    Article  CAS  PubMed  Google Scholar 

  24. Afif H, Benderdour M, Mfuna-Endam L, Martel-Pelletier J, Pelletier JP, Duval N, et al. Peroxisome proliferator-activated receptor gamma1 expression is diminished in human osteoarthritic cartilage and is downregulated by interleukin-1beta in articular chondrocytes. Arthritis Res Ther. 2007;9:R31.

    Article  PubMed  Google Scholar 

  25. Bordji K, Grillasca JP, Gouze JN, Magdalou J, Schohn H, Keller JM, et al. Evidence for the presence of peroxisome proliferator-activated receptor (PPAR) alpha and gamma and retinoid Z receptor in cartilage. PPARgamma activation modulates the effects of interleukin-1beta on rat chondrocytes. J Biol Chem. 2000;275:12243–50.

    Article  CAS  PubMed  Google Scholar 

  26. Dumond H, Presle N, Pottie P, Pacquelet S, Terlain B, Netter P, et al. Site specific changes in gene expression and cartilage metabolism during early experimental osteoarthritis. Osteoarthritis Cartil. 2004;12:284–95.

    Article  CAS  Google Scholar 

  27. Fahmi H, Pelletier JP, Mineau F, Martel-Pelletier J. 15d-PGJ(2) is acting as a ‘dual agent’ on the regulation of COX-2 expression in human osteoarthritic chondrocytes. Osteoarthritis Cartil. 2002;10:845–8.

    Article  CAS  Google Scholar 

  28. Fahmi H, Di Battista JA, Pelletier JP, Mineau F, Ranger P, Martel-Pelletier J. Peroxisome proliferator-activated receptor gamma activators inhibit interleukin-1beta-induced nitric oxide and matrix metalloproteinase 13 production in human chondrocytes. Arthritis Rheum. 2001;44:595–607.

    Article  CAS  PubMed  Google Scholar 

  29. Boyault S, Simonin MA, Bianchi A, Compe E, Liagre B, Mainard D, et al. 15-Deoxy-delta12, 14-PGJ2, but not troglitazone, modulates IL-1beta effects in human chondrocytes by inhibiting NF-kappaB and AP-1 activation pathways. FEBS Lett. 2001;501:24–30.

    Article  CAS  PubMed  Google Scholar 

  30. Boyault S, Bianchi A, Moulin D, Morin S, Francois M, Netter P, et al. 15-Deoxy-delta(12, 14)-prostaglandin J(2) inhibits IL-1beta-induced IKK enzymatic activity and IkappaBalpha degradation in rat chondrocytes through a PPARgamma-independent pathway. FEBS Lett. 2004;572:33–40.

    Article  CAS  PubMed  Google Scholar 

  31. Li X, Afif H, Cheng S, Martel-Pelletier J, Pelletier JP, Ranger P, et al. Expression and regulation of microsomal prostaglandin E synthase-1 in human osteoarthritic cartilage and chondrocytes. J Rheumatol. 2005;32:887–95.

    CAS  PubMed  Google Scholar 

  32. Moulin D, Poleni PE, Kirchmeyer M, Sebillaud S, Koufany M, Netter P, et al. Effect of peroxisome proliferator activated receptor (PPAR)gamma agonists on prostaglandins cascade in joint cells. Biorheology. 2006;43:561–75.

    PubMed  Google Scholar 

  33. Bianchi A, Moulin D, Sebillaud S, Koufany M, Galteau MM, Netter P, et al. Contrasting effects of peroxisome-proliferator-activated receptor (PPAR)gamma agonists on membrane-associated prostaglandin E2 synthase-1 in IL-1beta-stimulated rat chondrocytes: evidence for PPARgamma-independent inhibition by 15-deoxy-Delta12, 14prostaglandin J2. Arthritis Res Ther. 2005;7:R1325–37.

    Article  CAS  PubMed  Google Scholar 

  34. Francois M, Richette P, Tsagris L, Raymondjean M, Fulchignoni-Lataud MC, Forest C, et al. Peroxisome proliferator-activated receptor-gamma down-regulates chondrocyte matrix metalloproteinase-1 via a novel composite element. J Biol Chem. 2004;279:28411–8.

    Article  CAS  PubMed  Google Scholar 

  35. Sabatini M, Lesur C, Thomas M, Chomel A, Anract P, de Nanteuil G, et al. Effect of inhibition of matrix metalloproteinases on cartilage loss in vitro and in a guinea pig model of osteoarthritis. Arthritis Rheum. 2005;52:171–80.

    Article  CAS  PubMed  Google Scholar 

  36. Mix KS, Mengshol JA, Benbow U, Vincenti MP, Sporn MB, Brinckerhoff CE. A synthetic triterpenoid selectively inhibits the induction of matrix metalloproteinases 1 and 13 by inflammatory cytokines. Arthritis Rheum. 2001;44:1096–104.

    Article  CAS  PubMed  Google Scholar 

  37. Relic B, Benoit V, Franchimont N, Ribbens C, Kaiser MJ, Gillet P, et al. 15-Deoxy-delta12, 14-prostaglandin J2 inhibits Bay 11-7085-induced sustained extracellular signal-regulated kinase phosphorylation and apoptosis in human articular chondrocytes and synovial fibroblasts. J Biol Chem. 2004;279:22399–403.

    Article  CAS  PubMed  Google Scholar 

  38. Shan ZZ, Masuko-Hongo K, Dai SM, Nakamura H, Kato T, Nishioka K. A potential role of 15-deoxy-delta12, 14-prostaglandin J2 for induction of human articular chondrocyte apoptosis in arthritis. J Biol Chem. 2004;3:37939–50.

    Article  Google Scholar 

  39. Wittwer J, Hersberger M. The two faces of the 15-lipoxygenase in atherosclerosis. Prostaglandins Leukot Essent Fatty Acids. 2007;77:67–77.

    Article  CAS  PubMed  Google Scholar 

  40. Brash AR, Boeglin WE, Chang MS. Discovery of a second 15S-lipoxygenase in humans. Proc Natl Acad Sci USA. 1997;94:6148–52.

    Article  CAS  PubMed  Google Scholar 

  41. Chabane N, Zayed N, Benderdour M, Martel-Pelletier J, Pelletier JP, Duval N, et al. Human articular chondrocytes express 15-lipoxygenase-1 and -2: potential role in osteoarthritis. Arthritis Res Ther. 2009;11:R44.

    Article  PubMed  Google Scholar 

  42. Urade Y, Eguchi N. Lipocalin-type and hematopoietic prostaglandin D synthases as a novel example of functional convergence. Prostaglandins Other Lipid Mediat. 2002;68–69:375–82.

    Article  PubMed  Google Scholar 

  43. Tanaka T, Urade Y, Kimura H, Eguchi N, Nishikawa A, Hayaishi O. Lipocalin-type prostaglandin D synthase (beta-trace) is a newly recognized type of retinoid transporter. J Biol Chem. 1997;272:15789–95.

    Article  CAS  PubMed  Google Scholar 

  44. Mohri I, Taniike M, Okazaki I, Kagitani-Shimono K, Aritake K, Kanekiyo T, et al. Lipocalin-type prostaglandin D synthase is up-regulated in oligodendrocytes in lysosomal storage diseases and binds gangliosides. J Neurochem. 2006;97:641–51.

    Article  CAS  PubMed  Google Scholar 

  45. Zayed N, Li X, Chabane N, Benderdour M, Martel-Pelletier J, Pelletier JP, et al. Increased expression of lipocalin-type prostaglandin D2 synthase in osteoarthritic cartilage. Arthritis Res Ther. 2008;10:R146.

    Article  PubMed  Google Scholar 

  46. Ji JD, Cheon H, Jun JB, Choi SJ, Kim YR, Lee YH, et al. Effects of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) on the expression of inflammatory cytokines and apoptosis induction in rheumatoid synovial fibroblasts and monocytes. J Autoimmun. 2001;17:215–21.

    Article  CAS  PubMed  Google Scholar 

  47. Yamasaki S, Nakashima T, Kawakami A, Miyashita T, Ida H, Migita K, et al. Functional changes in rheumatoid fibroblast-like synovial cells through activation of peroxisome proliferator-activated receptor gamma-mediated signalling pathway. Clin Exp Immunol. 2002;129:379–84.

    Article  CAS  PubMed  Google Scholar 

  48. Simonin MA, Bordji K, Boyault S, Bianchi A, Gouze E, Becuwe P, et al. PPAR-gamma ligands modulate effects of LPS in stimulated rat synovial fibroblasts. Am J Physiol Cell Physiol. 2002;282:C125–33.

    CAS  PubMed  Google Scholar 

  49. Fahmi H, Pelletier JP, Di Battista JA, Cheung HS, Fernandes J, Martel-Pelletier J. Peroxisome proliferator-activated receptor gamma acitvators inhibit MMP-1 production in human synovial fibroblasts by reducing the activity of the activator protein 1. Osteoarthritis Cartil. 2002;10:100–8.

    Article  CAS  Google Scholar 

  50. Farrajota K, Cheng S, Martel-Pelletier J, Afif H, Pelletier JP, Li X, et al. Inhibition of interleukin-1beta-induced cyclooxygenase 2 expression in human synovial fibroblasts by 15-deoxy-Delta12, 14-prostaglandin J2 through a histone deacetylase-independent mechanism. Arthritis Rheum. 2005;52:94–104.

    Article  CAS  PubMed  Google Scholar 

  51. Cheng S, Afif H, Martel-Pelletier J, Pelletier JP, Li X, Farrajota K, et al. Activation of peroxisome proliferator-activated receptor gamma inhibits interleukin-1beta-induced membrane-associated prostaglandin E2 synthase-1 expression in human synovial fibroblasts by interfering with Egr-1. J Biol Chem. 2004;279:22057–65.

    Article  CAS  PubMed  Google Scholar 

  52. Tsubouchi Y, Kawahito Y, Kohno M, Inoue K, Hla T, Sano H. Feedback control of the arachidonate cascade in rheumatoid synoviocytes by 15-deoxy-Delta(12, 14)-prostaglandin J2. Biochem Biophys Res Commun. 2001;283:750–5.

    Article  CAS  PubMed  Google Scholar 

  53. Kawahito Y, Kondo M, Tsubouchi Y, Hashiramoto A, Bishop-Bailey D, Inoue K, et al. 15-Deoxy-delta(12, 14)-PGJ(2) induces synoviocyte apoptosis and suppresses adjuvant-induced arthritis in rats. J Clin Invest. 2000;106:189–97.

    Article  CAS  PubMed  Google Scholar 

  54. Yamazaki R, Kusunoki N, Matsuzaki T, Hashimoto S, Kawai S. Nonsteroidal anti-inflammatory drugs induce apoptosis in association with activation of peroxisome proliferator-activated receptor gamma in rheumatoid synovial cells. J Pharmacol Exp Ther. 2002;302:18–25.

    Article  CAS  PubMed  Google Scholar 

  55. Sugawara A, Uruno A, Kudo M, Ikeda Y, Sato K, Taniyama Y, et al. Transcription suppression of thromboxane receptor gene by peroxisome proliferator-activated receptor-gamma via an interaction with Sp1 in vascular smooth muscle cells. J Biol Chem. 2002;277:9676–83.

    Article  CAS  PubMed  Google Scholar 

  56. Wang LH, Yang XY, Zhang X, Huang J, Hou J, Li J, et al. Transcriptional inactivation of STAT3 by PPARgamma suppresses IL-6-responsive multiple myeloma cells. Immunity. 2004;20:205–18.

    Article  CAS  PubMed  Google Scholar 

  57. Kodera Y, Takeyama K, Murayama A, Suzawa M, Masuhiro Y, Kato S. Ligand type-specific interactions of peroxisome proliferator-activated receptor gamma with transcriptional coactivators. J Biol Chem. 2000;275:33201–4.

    Article  CAS  PubMed  Google Scholar 

  58. Ge K, Guermah M, Yuan CX, Ito M, Wallberg AE, Spiegelman BM, et al. Transcription coactivator TRAP220 is required for PPAR gamma 2-stimulated adipogenesis. Nature. 2002;417:563–7.

    Article  CAS  PubMed  Google Scholar 

  59. Urnov FD. Chromatin remodeling as a guide to transcriptional regulatory networks in mammals. J Cell Biochem. 2003;88:684–94.

    Article  CAS  PubMed  Google Scholar 

  60. Bhaumik SR, Smith E, Shilatifard A. Covalent modifications of histones during development and disease pathogenesis. Nat Struct Mol Biol. 2007;14:1008–16.

    Article  CAS  PubMed  Google Scholar 

  61. Ito K, Barnes PJ, Adcock IM. Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol. 2000;20:6891–903.

    Article  CAS  PubMed  Google Scholar 

  62. Ito K, Lim S, Caramori G, Cosio B, Chung KF, Adcock IM, et al. A molecular mechanism of action of theophylline: Induction of histone deacetylase activity to decrease inflammatory gene expression. Proc Natl Acad Sci USA. 2002;99:8921–6.

    Article  CAS  PubMed  Google Scholar 

  63. Pascual G, Fong AL, Ogawa S, Gamliel A, Li AC, Perissi V, et al. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature. 2005;437:759–63.

    Article  CAS  PubMed  Google Scholar 

  64. Kobayashi T, Notoya K, Naito T, Unno S, Nakamura A, Martel-Pelletier J, et al. Pioglitazone, a peroxisome proliferator-activated receptor gamma agonist, reduces the progression of experimental osteoarthritis in guinea pigs. Arthritis Rheum. 2005;52:479–87.

    Article  CAS  PubMed  Google Scholar 

  65. Boileau C, Martel-Pelletier J, Fahmi H, Mineau F, Boily M, Pelletier JP. The peroxisome proliferator-activated receptor gamma agonist pioglitazone reduces the development of cartilage lesions in an experimental dog model of osteoarthritis: in vivo protective effects mediated through the inhibition of key signaling and catabolic pathways. Arthritis Rheum. 2007;56:2288–98.

    Article  CAS  PubMed  Google Scholar 

  66. Cuzzocrea S, Mazzon E, Dugo L, Patel NS, Serraino I, Di Paola R, et al. Reduction in the evolution of murine type II collagen-induced arthritis by treatment with rosiglitazone, a ligand of the peroxisome proliferator-activated receptor gamma. Arthritis Rheum. 2003;48:3544–56.

    Article  CAS  PubMed  Google Scholar 

  67. Koufany M, Moulin D, Bianchi A, Muresan M, Sebillaud S, Netter P, et al. Anti-inflammatory effect of antidiabetic thiazolidinediones prevents bone resorption rather than cartilage changes in experimental polyarthritis. Arthritis Res Ther. 2008;10:R6.

    Article  PubMed  Google Scholar 

  68. Tomita T, Kakiuchi Y, Tsao PS. THR0921, a novel peroxisome proliferator-activated receptor gamma agonist, reduces the severity of collagen-induced arthritis. Arthritis Res Ther. 2006;8:R7.

    Article  PubMed  Google Scholar 

  69. Sumariwalla PF, Palmer CD, Pickford LB, Feldmann M, Foxwell BM, Brennan FM. Suppression of tumour necrosis factor production from mononuclear cells by a novel synthetic compound, CLX-090717. Rheumatology (Oxford). 2009;48:32–8.

    Article  CAS  Google Scholar 

  70. Setoguchi K, Misaki Y, Terauchi Y, Yamauchi T, Kawahata K, Kadowaki T, et al. Peroxisome proliferator-activated receptor-gamma haploinsufficiency enhances B cell proliferative responses and exacerbates experimentally induced arthritis. J Clin Invest. 2001;108:1667–75.

    CAS  PubMed  Google Scholar 

  71. Stumvoll M, Haring H. The peroxisome proliferator-activated receptor-gamma2 Pro12Ala polymorphism. Diabetes. 2002;51:2341–7.

    Article  CAS  PubMed  Google Scholar 

  72. Ek J, Andersen G, Urhammer SA, Hansen L, Carstensen B, Borch-Johnsen K, et al. Studies of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene in relation to insulin sensitivity among glucose tolerant caucasians. Diabetologia. 2001;44:1170–6.

    Article  CAS  PubMed  Google Scholar 

  73. Doney AS, Fischer B, Cecil JE, Boylan K, McGuigan FE, Ralston SH, et al. Association of the Pro12Ala and C1431T variants of PPARG and their haplotypes with susceptibility to Type 2 diabetes. Diabetologia. 2004;47:555–8.

    Article  CAS  PubMed  Google Scholar 

  74. Ridker PM, Cook NR, Cheng S, Erlich HA, Lindpaintner K, Plutzky J, et al. Alanine for proline substitution in the peroxisome proliferator-activated receptor gamma-2 (PPARG2) gene and the risk of incident myocardial infarction. Arterioscler Thromb Vasc Biol. 2003;23:859–63.

    Article  CAS  PubMed  Google Scholar 

  75. Temelkova-Kurktschiev T, Hanefeld M, Chinetti G, Zawadzki C, Haulon S, Kubaszek A, et al. Ala12Ala genotype of the peroxisome proliferator-activated receptor gamma2 protects against atherosclerosis. J Clin Endocrinol Metab. 2004;89:4238–42.

    Article  CAS  PubMed  Google Scholar 

  76. Meirhaeghe A, Fajas L, Helbecque N, Cottel D, Lebel P, Dallongeville J, et al. A genetic polymorphism of the peroxisome proliferator-activated receptor gamma gene influences plasma leptin levels in obese humans. Hum Mol Genet. 1998;7:435–40.

    Article  CAS  PubMed  Google Scholar 

  77. Wang XL, Oosterhof J, Duarte N. Peroxisome proliferator-activated receptor gamma C161 → T polymorphism and coronary artery disease. Cardiovasc Res. 1999;44:588–94.

    Article  CAS  PubMed  Google Scholar 

  78. Song J, Sakatsume M, Narita I, Goto S, Omori K, Takada T, et al. Peroxisome proliferator-activated receptor gamma C161T polymorphisms and survival of Japanese patients with immunoglobulin A nephropathy. Clin Genet. 2003;64:398–403.

    Article  CAS  PubMed  Google Scholar 

  79. Barbieri M, Bonafe M, Rizzo MR, Ragno E, Olivieri F, Marchegiani F, et al. Gender specific association of genetic variation in peroxisome proliferator-activated receptor (PPAR)gamma-2 with longevity. Exp Gerontol. 2004;39:1095–100.

    Article  CAS  PubMed  Google Scholar 

  80. Cheng S, Afif H, Martel-Pelletier J, Benderdour M, Pelletier JP, Hilal G, et al. Association of polymorphisms in the peroxisome proliferator-activated receptor gamma gene and osteoarthritis of the knee. Ann Rheum Dis. 2006;65:1394–7.

    Article  CAS  PubMed  Google Scholar 

  81. El-Sohemy A, Cornelis MC, Park YW, Bae SC. Catalase and PPARgamma2 genotype and risk of rheumatoid arthritis in Koreans. Rheumatol Int. 2006;26:388–92.

    Article  CAS  PubMed  Google Scholar 

  82. Butt C, Gladman D, Rahman P. PPAR-gamma gene polymorphisms and psoriatic arthritis. J Rheumatol. 2006;33:1631–3.

    CAS  PubMed  Google Scholar 

  83. Ogawa S, Urano T, Hosoi T, Miyao M, Hoshino S, Fujita M, et al. Association of bone mineral density with a polymorphism of the peroxisome proliferator-activated receptor gamma gene: PPARgamma expression in osteoblasts. Biochem Biophys Res Commun. 1999;260:122–6.

    Article  CAS  PubMed  Google Scholar 

  84. Tamaki J, Iki M, Morita A, Ikeda Y, Sato Y, Kajita E, et al. Peroxisome proliferator-activated receptor gamma polymorphism is related to peak bone mass: the JPOS study. Osteoporos Int. 2010;21:321–9.

    Article  CAS  PubMed  Google Scholar 

  85. Rhee EJ, Oh KW, Lee WY, Kim SY, Oh ES, Baek KH, et al. The effects of C161 → T polymorphisms in exon 6 of peroxisome proliferator-activated receptor-gamma gene on bone mineral metabolism and serum osteoprotegerin levels in healthy middle-aged women. Am J Obstet Gynecol. 2005;192:1087–93.

    Article  CAS  PubMed  Google Scholar 

  86. Casado-Diaz A, Cuenca-Acevedo R, Quesada JM, Dorado G. Individual single tube genotyping and DNA pooling by allele-specific PCR to uncover associations of polymorphisms with complex diseases. Clin Chim Acta. 2007;376:155–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Virginia Wallis for her assistance with manuscript preparation.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Fahmi.

About this article

Cite this article

Fahmi, H., Martel-Pelletier, J., Pelletier, JP. et al. Peroxisome proliferator-activated receptor gamma in osteoarthritis. Mod Rheumatol 21, 1–9 (2011). https://doi.org/10.1007/s10165-010-0347-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10165-010-0347-x

Keywords

Navigation