Skip to main content
Log in

Aluminum dross: aluminum metal recovery and emerging applications

  • REVIEW
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Recycling plays an important role in today's world due to its considerable contributions to mitigating energy concerns and environmental challenges. One of them is dross recycling from aluminum (Al) cast houses. Unlike other recyclable materials, dross has an abundance of components, including rare earth elements, heavy metals, ferrous, and recycled Al. These features make dross a useful commodity within the recycling sector. It is harmful to the ecology and human health to land fill the dross. Recycling dross is economically advantageous and yields products with added worth. This article consolidates the current methods for extracting alumina from dross. The processes of plasma dross processing, acidic and alkaline leaching are critically examined. Dross is used in numerous applications, including the production of hydrogen as a renewable energy source, the manufacture of refractories, composites, ceramics, reductants, catalysts, and absorption agents, as a result of its multi-utility advantages. In construction applications, dross serves a unique purpose by Providing greater strength, thermal insulation and less water absorption increased the desirability of materials in this industry. This study explores the applications that maximize the utilization of dross and the associated advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tsakiridis PE (2012) Aluminium salt slag characterization and utilization—a review. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2012.03.052

    Article  Google Scholar 

  2. Verma SK, Dwivedi VK, Dwivedi SP (2020) Utilization of aluminium dross for the development of valuable product—A review. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.12.045

    Article  Google Scholar 

  3. Shinzato MC, Hypolito R (2016) Effect of disposal of aluminum recycling waste in soil and water bodies. Environ Earth Sci. https://doi.org/10.1007/s12665-016-5438-3

    Article  Google Scholar 

  4. Attia N, Hassan KM, Hassan MI (2018) Environmental Impacts of Aluminum Dross After Metal Extraction. Minerals Metals and Materials Series. Springer International Publishing, pp 1155–1161

    Google Scholar 

  5. Bruckard WJ, Woodcock JT (2007) Characterisation and treatment of Australian salt cakes by aqueous leaching. Miner Eng 20:1376–1390. https://doi.org/10.1016/j.mineng.2007.08.020

    Article  Google Scholar 

  6. Huang XL, el Badawy A, Arambewela M et al (2014) Characterization of salt cake from secondary aluminum production. J Hazard Mater 273:192–199. https://doi.org/10.1016/j.jhazmat.2014.02.035

    Article  Google Scholar 

  7. Xiao Y, Reuter MA (2002) Recycling of distributed aluminium turning scrap. Miner Eng. https://doi.org/10.1016/S0892-6875(02)00137-1

    Article  Google Scholar 

  8. Lavoie S, Dubé G (1991) A salt-free treatment of aluminum dross using plasma heating. JOM 43:54–55. https://doi.org/10.1007/BF03220144

    Article  Google Scholar 

  9. Wajima T (2020) A novel process for recycling of aluminum dross using alkali fusion. Mater Trans 61:2208–2215. https://doi.org/10.2320/matertrans.M-M2020849

    Article  Google Scholar 

  10. Solem CKW, Deledda S, Tranell G, Aune RE (2023) Sampling procedure, characterization, and quantitative analyses of industrial aluminum white dross. J Sustain Metall 9(1):95–106

    Article  Google Scholar 

  11. Peng, Zhiwei ,Hwang, Jiann-Yang, Downey, Jerome P. et al(2022). 10th International Symposium on High-Temperature Metallurgical Processing. Springer.

  12. Gomez A, NBJA LT (2008) Quantitative analysis of aluminum dross by the Rietveld method. Mater transa 49(4):728–732

    Article  Google Scholar 

  13. Wang C, Li S, Guo Y, He Y, Liu J, Liu H (2023) Comprehensive treatments of aluminum dross in China: a critical review. J Environ Manage 345:118575. https://doi.org/10.1016/j.jenvman.2023.118575

    Article  Google Scholar 

  14. Murayama N, Maekawa I, Ushiro H, Miyoshi T, Shibata J, Valix M (2012) Synthesis of various layered double hydroxides using aluminum dross generated in aluminum recycling process. Int J Miner Process 110:46–52. https://doi.org/10.1016/j.minpro.2012.03.011

    Article  Google Scholar 

  15. López-Delgado A, Tayibi H, Pérez C, Alguacil FJ, López FA (2009) A hazardous waste from secondary aluminium metallurgy as a new raw material for calcium aluminate glasses. J Hazard Mater 165(1–3):180–186. https://doi.org/10.1016/j.jhazmat.2008.09.124

    Article  Google Scholar 

  16. Abdulkadir A, Ajayi A, Hassan MI (2015) Evaluating the chemical composition and the molar heat capacities of a white aluminum dross. Energy Procedia 75:2099–2105. https://doi.org/10.1016/j.egypro.2015.07.326

    Article  Google Scholar 

  17. Bruckard WJ, Woodcock JT (2009) Recovery of valuable materials from aluminium salt cakes. Int J Miner Process 93(1):1–5. https://doi.org/10.1016/j.minpro.2009.05.002

    Article  Google Scholar 

  18. Yoshimura HN, Abreu AP, Molisani AL, De Camargo AC, Portela JCS, Narita NE (2008) Evaluation of aluminum dross waste as raw material for refractories. Ceram Int 34(3):581–591. https://doi.org/10.1016/j.ceramint.2006.12.007

    Article  Google Scholar 

  19. Kudyba A, Akhtar S, Johansen I, Safarian J (2021) Aluminum recovery from white aluminum dross by a mechanically activated phase separation and remelting process. JOM 73:2625–2634. https://doi.org/10.1007/s11837-021-04730-x

    Article  Google Scholar 

  20. Hiraki T, Nagasaka T (2015) An easier upgrading process of aluminum dross residue by screening technique. J Mater Cycles Waste Manag 17:566–573. https://doi.org/10.1007/s10163-014-0283-5

    Article  Google Scholar 

  21. Kevorkijan V (2002) Evaluating the aluminum content of pressed dross. JOM 54:34–36. https://doi.org/10.1007/BF02701070

    Article  Google Scholar 

  22. Hwang J, Huang X, Xu Z (2006) Recovery of metals from aluminum dross and saltcake. J Miner Mater Charact Eng. https://doi.org/10.4236/jmmce.2006.51003

    Article  Google Scholar 

  23. Capuzzi S, Timelli G (2018) Preparation and melting of scrap in aluminum recycling: a review. Metals (Basel). https://doi.org/10.3390/MET8040249

    Article  Google Scholar 

  24. Alberto J, Tenorio S, Carboni MC et al (2001) Recycling of aluminium-effect of fluoride additions on the salt viscosity and on the alumina dissolution. J light met. https://doi.org/10.1016/S1471-5317(01)00013-X

    Article  Google Scholar 

  25. Majidi O, Shabestari SG, Aboutalebi MR (2007) Study of fluxing temperature in molten aluminum refining process. J Mater Process Technol 182:450–455. https://doi.org/10.1016/j.jmatprotec.2006.09.003

    Article  Google Scholar 

  26. Masson DB, Taghiei MM (1989) interfacial reaction between aluminum alloys and salt flux during melting. Mater transactions JIM. https://doi.org/10.2320/MATERTRANS1989.30.411

    Article  Google Scholar 

  27. Markus R, Yanping X, Boin U (2004) Recycling and environmental issues of metallurgical slags and salt fluxes. VII Int Conf Molten Slags Fluxes Salts. 2004:349–356

    Google Scholar 

  28. Wibner S, Antrekowitsch H, Meisel TC (2021) Studies on the formation and processing of aluminium dross with particular focus on special metals. Metals (Basel). https://doi.org/10.3390/met11071108

    Article  Google Scholar 

  29. Burkhard R, Hoffelner W, Eschenbach RC (1994) Recycling of metals from waste with thermal plasma. Resour conserve recycl 10:11–16. https://doi.org/10.1016/0921-3449(94)90033-7

    Article  Google Scholar 

  30. Drouet M, Handfield MD, Meunier J, Laflamme CB (1994) Dross treatment in a rotary arc furnace with graphite electrodes. JOM 46:26–27. https://doi.org/10.1007/BF03220691

    Article  Google Scholar 

  31. Tzonev T, Lucheva B (2007) Recovering aluminum from aluminum dross in a DC electric rotary furnace. JOM J Miner Met Mater Soc 59(11):64–68. https://doi.org/10.1007/s11837-007-0143-z

    Article  Google Scholar 

  32. Ünlü N, Drouet M (2002) Comparison of salt-free aluminum dross treatment processes. Resour Conserv Recycl 36:61–72. https://doi.org/10.1016/S0921-3449(02)00010-1

    Article  Google Scholar 

  33. Beheshti R, Moosberg-Bustnes J, Akhtar S, Aune RE (2014) Black dross: processing salt removal from black dross by thermal treatment. JOM 66:2243–2252. https://doi.org/10.1007/s11837-014-1178-6

    Article  Google Scholar 

  34. Khoei AR, Masters I, Gethin DT (2003) Numerical modelling of the rotary furnace in aluminium recycling processes. J Mater Process Technol 139:567–572. https://doi.org/10.1016/S0924-0136(03)00538-7

    Article  Google Scholar 

  35. Carmona M, Cortés C (2014) Numerical simulation of a secondary aluminum melting furnace heated by a plasma torch. J Mater Process Technol 214:334–346. https://doi.org/10.1016/j.jmatprotec.2013.09.024

    Article  Google Scholar 

  36. Syvertsen M, Øye B (2018) Recycling of Oxide from Dross into Aluminum Electrolysis Cells. In: Martin O (ed) Light Metals 2018 The Minerals, Metals & Materials Series. Springer, Cham

    Google Scholar 

  37. Tsakiridis PE, Oustadakis P, Agatzini-Leonardou S (2013) Aluminium recovery during black dross hydrothermal treatment. J Environ Chem Eng 1:23–32. https://doi.org/10.1016/j.jece.2013.03.004

    Article  Google Scholar 

  38. Shen H, Forssberg E (2003) An overview of recovery of metals from slags. Waste Manage 23:933–949. https://doi.org/10.1016/S0956-053X(02)00164-2

    Article  Google Scholar 

  39. Jafari NH, Asce SM, Stark TD et al (2014) Classification and reactivity of secondary aluminum production. J Hazard Toxic Radioact Waste 8(4). https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000223

  40. Bowen P, Highfield J, Mocellin A, Ring TA (1990) Degradation of aluminum nitride powder in an aqueous environment. ChemInform. https://doi.org/10.1002/CHIN.199024021

    Article  Google Scholar 

  41. Fukumoto S, Hookabe T, Tsubakino H (2000) Hydrolysis behavior of aluminum nitride in various solutions. J Mater Sci 35:2743–2748. https://doi.org/10.1023/A:1004718329003

    Article  Google Scholar 

  42. Zauzi NS, Zakaria MZ, Baini R, Rahman MR, Mohamed Sutan N, Hamdan S (2016) Influence of alkali treatment on the surface area of aluminium dross. Adv Mater Sci Eng. https://doi.org/10.1155/2016/6306304

    Article  Google Scholar 

  43. Shi M, Li Y, Ni P (2022) Recycling valuable elements from aluminum dross. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-022-03925-2

    Article  Google Scholar 

  44. David E, Kopac J (2018) The assessment of the recycling process of aluminum hazardous waste and a new route of development. Mater Proc. https://doi.org/10.1016/j.matpr.2018.10.415

    Article  Google Scholar 

  45. Gao Q, Guo Q, Li Y et al (2021) Innovative technology for defluorination of secondary aluminum dross by alkali leaching. Miner Eng. https://doi.org/10.1016/j.mineng.2021.107134

    Article  Google Scholar 

  46. Meshram A, Gautam D, Singh KK (2020) Recycling of white aluminium dross: production of potash alum. Trans Indian Inst Met 73:1239–1248. https://doi.org/10.1007/s12666-020-01973-1

    Article  Google Scholar 

  47. Hu K, Reed D, Robshaw TJ et al (2021) Characterisation of aluminium black dross before and after stepwise salt-phase dissolution in non-aqueous solvents. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.123351

    Article  Google Scholar 

  48. Amer A (2002) Extracting aluminum from dross tailings. JOM 54:72–75. https://doi.org/10.1007/BF02709754

    Article  Google Scholar 

  49. Dash B, Das BR, Tripathy BC et al (2008) Acid dissolution of alumina from waste aluminium dross. Hydrometallurgy 92:48–53. https://doi.org/10.1016/j.hydromet.2008.01.006

    Article  Google Scholar 

  50. Das BR, Dash B, Tripathy BC et al (2007) Production of η-alumina from waste aluminium dross. Miner Eng 20:252–258. https://doi.org/10.1016/j.mineng.2006.09.002

    Article  Google Scholar 

  51. Sarker MSR, Alam MZ, Qadir MR et al (2015) Extraction and characterization of alumina nanopowders from aluminum dross by acid dissolution process. Int J Miner Metall Mater 22:429–436. https://doi.org/10.1007/s12613-015-1090-2

    Article  Google Scholar 

  52. David E, Kopac J (2013) Aluminum recovery as a product with high added value using aluminum hazardous waste. J Hazard Mater 261:316–324. https://doi.org/10.1016/j.jhazmat.2013.07.042

    Article  Google Scholar 

  53. Uehara K, Takeshita H, Kotaka H (2002) Hydrogen gas generation in the wet cutting of aluminum and its alloys. J Mater Process Technol 127:174–177. https://doi.org/10.1016/S0924-0136(02)00121-8

    Article  Google Scholar 

  54. Hurtubise DW, Klosterman DA, Morgan AB (2018) Development and demonstration of a deployable apparatus for generating hydrogen from the hydrolysis of aluminum via sodium hydroxide. Int J Hydrogen Energy 43:6777–6788. https://doi.org/10.1016/j.ijhydene.2018.02.087

    Article  Google Scholar 

  55. David E, Kopac J (2012) Hydrolysis of aluminum dross material to achieve zero hazardous waste. J Hazard Mater 209–210:501–509. https://doi.org/10.1016/j.jhazmat.2012.01.064

    Article  Google Scholar 

  56. Elsarrag E, Elhoweris A, Alhorr Y (2017) The production of hydrogen as an alternative energy carrier from aluminium waste. Energy Sustain Soc. https://doi.org/10.1186/s13705-017-0110-7

    Article  Google Scholar 

  57. Li P, Wang J, Zhang X et al (2017) Molten salt-enhanced production of hydrogen by using skimmed hot dross from aluminum remelting at high temperature. Int J Hydrogen Energy 42:12956–12966. https://doi.org/10.1016/j.ijhydene.2017.04.046

    Article  Google Scholar 

  58. Meshram A, Jain A, Rao MD, Singh KK (2019) From industrial waste to valuable products: preparation of hydrogen gas and alumina from aluminium dross. J Mater Cycles Waste Manag. https://doi.org/10.1007/s10163-019-00856-y

    Article  Google Scholar 

  59. Nakajima K, Osuga H, Yokoyama K, Nagasaka T (2007) Material flow analysis of aluminum dross and environmental assessment for its recycling process. Mater Trans 48:2219–2224. https://doi.org/10.2320/MATERTRANS.MRA2007070

    Article  Google Scholar 

  60. Elseknidy MH, Salmiaton A, Shafizah IN, Saad AH (2020) A study on mechanical properties of concrete incorporating aluminum dross, fly ash, and quarry dust. Sustainability (Switzerland) 12:1–13. https://doi.org/10.3390/su12219230

    Article  Google Scholar 

  61. Ewais EMM, Khalil NM, Amin MS et al (2009) Utilization of aluminum sludge and aluminum slag (dross) for the manufacture of calcium aluminate cement. Ceram Int 35:3381–3388. https://doi.org/10.1016/j.ceramint.2009.06.008

    Article  Google Scholar 

  62. Javali S, Chandrashekar AR, Naganna SR et al (2017) Eco-concrete for sustainability: utilizing aluminium dross and iron slag as partial replacement materials. Clean Technol Environ Policy 19:2291–2304. https://doi.org/10.1007/s10098-017-1419-9

    Article  Google Scholar 

  63. Panditharadhya BJ, Mulangi RH, Shankar AU, Amulya S (2019) Performance of concrete mix with secondary aluminium dross as a partial replacement for Portland pozzolana cement. Airfld Highw Pavements. https://doi.org/10.1061/9780784482469041

    Article  Google Scholar 

  64. Elinwa AU, Mbadike EM (2011) The use of aluminum waste for concrete production. J Asian Archit Build Eng 10:217–220. https://doi.org/10.3130/jaabe.10.217

    Article  Google Scholar 

  65. Nduka DO, Joshua O, Ajao AM et al (2019) Influence of secondary aluminum dross (SAD) on compressive strength and water absorption capacity properties of sandcrete block. Cogent Eng. https://doi.org/10.1080/23311916.2019.1608687

    Article  Google Scholar 

  66. Nduka DO, Ede AN, Olofinnade OM, Ajao AM (2020) Mechanical and water absorption properties of normal strength concrete (NSC) containing secondary aluminum dross (SAD). Int J Eng Res Afr 47:1–13. https://doi.org/10.4028/www.scientific.net/JERA.47.1

    Article  Google Scholar 

  67. Reddy MS, Neeraja D (2016) Mechanical and durability aspects of concrete incorporating secondary aluminium slag. Resour Effic Technol 2:225–232. https://doi.org/10.1016/j.reffit.2016.10.012

    Article  Google Scholar 

  68. Pereira DA, Aguiar B, Castro F, Almeida M, Labrincha JA (2000) Mechanical behaviour of Portland cement mortars with incorporation of Al-containing salt slags. Cem Concr Res 30:1131–1138. https://doi.org/10.1016/S0008-8846(00)00272-6

    Article  Google Scholar 

  69. Taha MA, Zawrah MF, Abomostafa HM (2022) Fabrication of Al/Al2O3/ SiC/graphene hybrid nanocomposites from Al-dross by powder metallurgy: sinterability, mechanical and electrical properties. Ceram Int 48:20923–20932. https://doi.org/10.1016/j.ceramint.2022.04.084

    Article  Google Scholar 

  70. Taha MA, Nassar AH, Zawrah MF (2020) In-situ formation of composite having hard outer layer based on aluminum dross reinforced by SiC and TiO2. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.118638

    Article  Google Scholar 

  71. Yurtbasi Z, Kuyumcu M, Kurt G, Kasgoz A (2022) Evaluation of morphological, rheological, mechanical, and dielectric properties of aluminum dross filled polyoxymethylene (POM) composites. Polym Compos. https://doi.org/10.1002/pc.26778

    Article  Google Scholar 

  72. Kevorkijan VM (1999) The quality of aluminum dross particles and cost-effective reinforcement for structural aluminum-based composites. Compos Sci Technol 59:1745–1751. https://doi.org/10.1016/S0266-3538(99)00034-2

    Article  Google Scholar 

  73. Ibarra Castro MN, Almanza Robles JM, Cortés Hernández DA et al (2009) Development of mullite/zirconia composites from a mixture of aluminum dross and zircon. Ceram Int 35:921–924. https://doi.org/10.1016/j.ceramint.2008.03.006

    Article  Google Scholar 

  74. Aj O, Ts I, Hs B et al (2014) The development and characterisation of aluminium dross-epoxy resin composite materials. J Mater Sci Res. https://doi.org/10.5539/jmsr.v3n2p23

    Article  Google Scholar 

  75. Li W, Zhang X, Zhang J et al (2022) Porous ceramics with near-zero shrinkage and low thermal conductivity from hazardous secondary aluminum dross. J Am Ceram Soc 105:3197–3210. https://doi.org/10.1111/jace.18322

    Article  Google Scholar 

  76. Ewais EMM, Besisa NHA (2018) Tailoring of magnesium aluminum titanate based ceramics from aluminum dross. Mater Des 141:110–119. https://doi.org/10.1016/j.matdes.2017.12.027

    Article  Google Scholar 

  77. Sassi M, Simon A (2022) Waste-to-reuse foam glasses produced from soda-lime-silicate glass, cathode ray tube glass, and aluminium dross. Inorganics (Basel). https://doi.org/10.3390/inorganics10010001

    Article  Google Scholar 

  78. Xu L, Liu Y, Chen M, Wang N (2022) Efficient recycling of valuable metals from waste copper slag by using secondary aluminum dross as a novel reductant. Metall Mater Trans B. https://doi.org/10.1007/s11663-022-02567-6

    Article  Google Scholar 

  79. Zhang G, Wang N, Chen M, Cheng Y (2020) Comprehensive recovery of multisource metallurgical wastes: recycling nickel slag by aluminum dross with converter-slag addition. ISIJ Int 60:1863–1871. https://doi.org/10.2355/isijinternational.ISIJINT-2019-670

    Article  Google Scholar 

  80. Zhang G, Wang N, Chen M, Cheng Y (2020) Recycling nickel slag by aluminum dross: Iron-extraction and secondary slag stabilization. ISIJ Int 60:602–609. https://doi.org/10.2355/isijinternational.ISIJINT-2019-173

    Article  Google Scholar 

  81. Heo JH, Park JH (2017) Thermochemical analysis for the reduction behavior of FeO in EAF slag via aluminothermic smelting reduction (ASR) process: Part II. effect of aluminum dross and lime fluxing on Fe and Mn recovery. Calphad 58:229–238. https://doi.org/10.1016/j.calphad.2017.02.004

    Article  Google Scholar 

  82. Fotovat F, Kazemian H, Kazemeini M (2009) Synthesis of Na-A and faujasitic zeolites from high silicon fly ash. Mater Res Bull 44:913–917. https://doi.org/10.1016/j.materresbull.2008.08.008

    Article  Google Scholar 

  83. Sánchez-Hernández R, López-Delgado A, Padilla I et al (2016) One-step synthesis of NaP1, SOD and ANA from a hazardous aluminum solid waste. Microporous Mesoporous Mater 226:267–277. https://doi.org/10.1016/j.micromeso.2016.01.037

    Article  Google Scholar 

  84. Takehito HIRAKI ANNO and TA (2009) Synthesis of zeolite-X from waste materials. volume 49:1644–1648: https://doi.org/10.2355/isijinternational.49.1644

  85. Yoldi M, Fuentes-Ordoñez EG, Korili SA, Gil A (2020) Zeolite synthesis from aluminum saline slag waste. Powder Technol 366:175–184. https://doi.org/10.1016/j.powtec.2020.02.069

    Article  Google Scholar 

  86. Kuroki S, Hashishin T, Morikawa T et al (2019) Selective synthesis of zeolites A and X from two industrial wastes: crushed stone powder and aluminum ash. J Environ Manage 231:749–756. https://doi.org/10.1016/j.jenvman.2018.10.082

    Article  Google Scholar 

  87. Kang Y, Swain B, Im B et al (2019) Synthesis of zeolite using aluminum dross and waste LCD glass powder: a waste to waste integration valorization process. Metals (Basel). https://doi.org/10.3390/met9121240

    Article  Google Scholar 

  88. Ghassemi Kakroudi M, Yeugo-Fogaing E, Huger M et al (2009) Influence of the thermal history on the mechanical properties of two alumina based castables. J Eur Ceram Soc 29:3197–3204. https://doi.org/10.1016/j.jeurceramsoc.2009.05.052

    Article  Google Scholar 

  89. Su N, Li Z, Ding Y et al (2021) Waste to wealth strategy: preparation and properties of lightweight Al2O3-SiO2-rich castables using aluminum dross waste. Materials. https://doi.org/10.3390/ma14247803

    Article  Google Scholar 

  90. Yoshimura HN, Abreu AP, Molisani AL et al (2008) Evaluation of aluminum dross waste as raw material for refractories. Ceram Int 34:581–591. https://doi.org/10.1016/j.ceramint.2006.12.007

    Article  Google Scholar 

  91. Chobtham C, Kongkarat S (2020) Synthesis of hercynite from aluminium dross at 1550°C: Implication for industrial waste recycling. Materials Science Forum. Trans Tech Publications Ltd., pp 223–228

    Google Scholar 

Download references

Funding

The project was funded by the Indian Ministry of Mines (project No.: SNTMOM/156/2020), for which the authors are grateful.

Author information

Authors and Affiliations

Authors

Contributions

Kishor Modalavalasa: original manuscript writing, literature review, analysis and critical discussions; Dr. Kameswari Prasada Rao Ayyagari: conceptualization, overall guidance and final draft correction.

Corresponding author

Correspondence to Kameswari Prasada Rao Ayyagari.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5065 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modalavalasa, K., Ayyagari, K.P.R. Aluminum dross: aluminum metal recovery and emerging applications. J Mater Cycles Waste Manag (2024). https://doi.org/10.1007/s10163-024-01948-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10163-024-01948-0

Keywords

Navigation