Skip to main content
Log in

Sustainable next-generation single-component geopolymer binders: a review of mechano-chemical behaviour and life-cycle cost analysis

  • REVIEW
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Geopolymer is relatively newer binder developed as an alternative to conventional cementitious binders. It lowers CO2 emissions, consumes less energy, and effectively utilises industrial wastes. The alkali activator solution, used in traditional two-part geopolymer to initiate the polymerisation reactions, is highly viscous and corrosive, which limits the effective utilisation of geopolymer concrete in construction. Consequently, a single-component “just add water” geopolymer system was developed to address the issues of cast in situ applications of two-part geopolymer concrete. This paper discusses the diverse examinations of the various source materials and alkali activators employed over the years in synthesising single-component geopolymer (SCG) along with their detailed chemical analysis. In addition to the different constituent types, the effect of various curing conditions, e.g., ambient or elevated temperatures, admixtures were also presented on the properties (physical, mechanical, and durability) of SCG-based paste/mortar/concrete. Such detailed analysis of the chemical composition and engineering properties of various SCG mixes would help the researcher and material designer to choose a suitable mix proportion based on the targeted performance. Further, based on an in-depth analysis of the various bindings phases (e.g., CSH and CASH) formed in SCG, the schematic representation of the reaction mechanism was highlighted. This paper also highlighted the life-cycle cost analysis (LCCA) and current challenges in the production of SCG. Therefore, the present review article would serve as a source of information for the scientific community to understand the current research trend in the development of SCG binder, its design and consequent prediction of various engineering properties made with different constituent materials and would serve as a source of information for further research and development which is one step towards the goals of net zero emissions by 2050 through a sustainable approach.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Singh SK, Tiwari N, Badkul A (2021) Low energy sustainable cementitious binders for eco-friendly construction: a review. In: International e-conference on sustainable development in concrete technology. DYPCE, Pune, pp 283–291

  2. Sharma M, Bishnoi S, Martirena F, Scrivener K (2021) Limestone calcined clay cement and concrete: a state-of-the-art review. Cem Concr Res 149:106564

    Google Scholar 

  3. Burciaga-Díaz O, Escalante-García JI (2017) Comparative performance of alkali activated slag/metakaolin cement pastes exposed to high temperatures. Cem Concr Compos 84:157–166

    Google Scholar 

  4. Global Cement Production (1995–2021) © Statista 2021

  5. Environment UN, Scrivener KL, John VM, Gartner EM (2018) Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry. Cem Concr Res 114:2–26

    Google Scholar 

  6. Schöler A, Lothenbach B, Winnefeld F, Zajac M (2015) Hydration of quaternary Portland cement blends containing blast-furnace slag, siliceous fly ash and limestone powder. Cem Concr Compos 55:374–382

    Google Scholar 

  7. Díaz YC, Berriel SS, Heierli U et al (2017) Limestone calcined clay cement as a low-carbon solution to meet expanding cement demand in emerging economies. Dev Eng 2:82–91

    Google Scholar 

  8. Fayomi GU, Mini SE, Fayomi OSI, Ayoola AA (2019) Perspectives on environmental CO2 emission and energy factor in Cement Industry. IOP Conf Ser Earth Environ Sci 331:012035

    Google Scholar 

  9. Schneider M, Romer M, Tschudin M, Bolio H (2011) Sustainable cement production—present and future. Cem Concr Res 41:642–650

    Google Scholar 

  10. Wojtacha-Rychter K, Kucharski P, Smolinski A (2021) Conventional and alternative sources of thermal energy in the production of cement—an impact on CO2 emission. Energies (Basel) 14:1539

    Google Scholar 

  11. Nie S, Zhou J, Yang F et al (2022) Analysis of theoretical carbon dioxide emissions from cement production: methodology and application. J Clean Prod 334:130270

    Google Scholar 

  12. Gartner E, Hirao H (2015) A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete. Cem Concr Res 78:126–142

    Google Scholar 

  13. Singh SK, Vashistha P (2021) Development of newer composite cement through mechano-chemical activation of steel slag. Constr Build Mater 268:121147

    Google Scholar 

  14. Zhang Y, Xiao R, Jiang X et al (2020) Effect of particle size and curing temperature on mechanical and microstructural properties of waste glass-slag-based and waste glass-fly ash-based geopolymers. J Clean Prod 273:122970

    Google Scholar 

  15. Badkul A, Paswan R, Singh SK, Tegar JP (2022) A comprehensive study on the performance of alkali activated fly ash/GGBFS geopolymer concrete pavement. Road Mater Pavement Des 23:1815–1835

    Google Scholar 

  16. Davidovits J (1993) Geopolymer cements to minimize carbon dioxide greenhouse warming. Ceram Trans 37:165–182

    Google Scholar 

  17. Provis JL, Lukey GC, van Deventer JSJ (2005) Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results. Chem Mater 17:3075–3085

    Google Scholar 

  18. Davidovits J (1991) Geopolymers: inorganic polymeric new materials. J Therm Anal Calorim 37:1633–1656

    Google Scholar 

  19. Provis JL, van Deventer JSJ (2009) Geopolymers: structures, processing, properties and industrial applications. Elsevier, Cambridge

    Google Scholar 

  20. Mehta A, Siddique R (2016) An overview of geopolymers derived from industrial by-products. Constr Build Mater 127:183–198

    Google Scholar 

  21. Davidovits J (1989) Geopolymers and geopolymeric materials. J Therm Anal 35:429–441

    Google Scholar 

  22. Nath P, Sarker PK (2014) Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr Build Mater 66:163–171

    Google Scholar 

  23. Krivenko P, Garcia-Lodeiro I, Kavalerova E et al (2014) A review on alkaline activation: new analytical perspectives. Mater Construcc 64:e022

    Google Scholar 

  24. Aredes FGM, Campos TMB, Machado JPB et al (2015) Effect of cure temperature on the formation of metakaolinite-based geopolymer. Ceram Int 41:7302–7311

    Google Scholar 

  25. Part WK, Ramli M, Cheah CB (2015) An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products. Constr Build Mater 77:370–395

    Google Scholar 

  26. Bellum RR, Venkatesh C, Madduru SRC (2021) Influence of red mud on performance enhancement of fly ash-based geopolymer concrete. Innov Infrastruct Solut 6:215

    Google Scholar 

  27. Bakri AM, Kamarudin H, Binhussain M et al (2013) Comparison of geopolymer fly ash and ordinary Portland cement to the strength of concrete. Adv Sci Lett 19:3592–3595

    Google Scholar 

  28. Bakharev T (2005) Resistance of geopolymer materials to acid attack. Cem Concr Res 35:658–670

    Google Scholar 

  29. Albitar M, Ali MSM, Visintin P, Drechsler M (2017) Durability evaluation of geopolymer and conventional concretes. Constr Build Mater 136:374–385

    Google Scholar 

  30. Aiken TA, Kwasny J, Sha W, Soutsos MN (2018) Effect of slag content and activator dosage on the resistance of fly ash geopolymer binders to sulfuric acid attack. Cem Concr Res 111:23–40

    Google Scholar 

  31. Kong DLY, Sanjayan JG (2010) Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem Concr Res 40:334–339

    Google Scholar 

  32. Sarker PK, Kelly S, Yao Z (2014) Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete. Mater Des 63:584–592

    Google Scholar 

  33. Sarker PK, Mcbeath S (2015) Fire endurance of steel reinforced fly ash geopolymer concrete elements. Constr Build Mater 90:91–98

    Google Scholar 

  34. Duxson P, Fernández-Jiménez A, Provis JL et al (2007) Geopolymer technology: the current state of the art. J Mater Sci 42:2917–2933

    Google Scholar 

  35. Sagoe-Crentsil K, Brown T, Taylor A (2013) Drying shrinkage and creep performance of geopolymer concrete. J Sustain Cem Based Mater 2:35–42

    Google Scholar 

  36. Aswani E, Karthi L (2017) A literature review on fiber reinforced geopolymer concrete. Int J Sci Eng Res 8:408

    Google Scholar 

  37. Shi C, Shi Z, Hu X et al (2015) A review on alkali-aggregate reactions in alkali-activated mortars/concretes made with alkali-reactive aggregates. Mater Struct 48:621–628

    Google Scholar 

  38. Nematollahi B, Sanjayan J, Chai JXH, Lu TM (2014) Properties of fresh and hardened glass fiber reinforced fly ash based geopolymer concrete. In: Key engineering materials. Trans Tech Publ, pp 629–633

  39. Provis JL (2014) Geopolymers and other alkali activated materials: why, how, and what? Mater Struct 47:11–25

    Google Scholar 

  40. Duxson P, Provis JL (2008) Designing precursors for geopolymer cements. J Am Ceram Soc 91:3864–3869

    Google Scholar 

  41. Abdel-Gawwad HA, Abo-El-Enein SA (2016) A novel method to produce dry geopolymer cement powder. HBRC J 12:13–24

    Google Scholar 

  42. Ye N, Yang J, Liang S et al (2016) Synthesis and strength optimization of one-part geopolymer based on red mud. Constr Build Mater 111:317–325

    Google Scholar 

  43. Palomo Á, Fernández-Jiménez A, López Hombrados C, Lleyda JL (2007) Railway sleepers made of alkali activated fly ash concrete. Rev Ing Constr 22:75–80

    Google Scholar 

  44. van Deventer JSJ, Provis JL, Duxson P (2012) Technical and commercial progress in the adoption of geopolymer cement. Miner Eng 29:89–104

    Google Scholar 

  45. Ahmad MR, Chen B, Shah SFA (2020) Influence of different admixtures on the mechanical and durability properties of one-part alkali-activated mortars. Constr Build Mater 265:120320

    Google Scholar 

  46. Abdollahnejad Z, Luukkonen T, Mastali M et al (2019) Development of one-part alkali-activated ceramic/slag binders containing recycled ceramic aggregates. J Mater Civ Eng 31:04018386

    Google Scholar 

  47. Shah SFA, Chen B, Oderji SY et al (2020) Improvement of early strength of fly ash-slag based one-part alkali activated mortar. Constr Build Mater 246:118533

    Google Scholar 

  48. Ming LY, En OW, Yong HC et al (2021) Characteristic of one-part geopolymer as building materials. Sustainable waste utilization in bricks, concrete, and cementitious materials: characteristics, properties, performance, and applications. Springer, Singapore, pp 97–118

    Google Scholar 

  49. Adesanya E, Ohenoja K, di Maria A et al (2020) Alternative alkali-activator from steel-making waste for one-part alkali-activated slag. J Clean Prod 274:123020

    Google Scholar 

  50. Bong SH, Nematollahi B, Xia M et al (2022) Properties of additively manufactured geopolymer incorporating mineral wollastonite microfibers. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2022.127282

    Article  Google Scholar 

  51. Bong SH, Nematollahi B, Arunothayan AR et al (2020) Effect of wollastonite micro-fiber addition on properties of 3D-printable ‘just-add-water’ geopolymers. In: Second RILEM international conference on concrete and digital fabrication: digital concrete 2020. Springer, pp 23–31

  52. Bong SH, Xia M, Nematollahi B, Shi C (2021) Ambient temperature cured ‘just-add-water’geopolymer for 3D concrete printing applications. Cem Concr Compos 121:104060

    Google Scholar 

  53. Muthukrishnan S, Ramakrishnan S, Sanjayan J (2021) Effect of alkali reactions on the rheology of one-part 3D printable geopolymer concrete. Cem Concr Compos 116:103899

    Google Scholar 

  54. Panda B, Singh GVPB, Unluer C, Tan MJ (2019) Synthesis and characterization of one-part geopolymers for extrusion based 3D concrete printing. J Clean Prod 220:610–619

    Google Scholar 

  55. Glasby T, Day J, Genrich R, Aldred J (2015) EFC geopolymer concrete aircraft pavements at Brisbane West Wellcamp Airport. Concrete 2015:1–9

    Google Scholar 

  56. Rao F, Liu Q (2015) Geopolymerization and its potential application in mine tailings consolidation: a review. Miner Process Extr Metall Rev 36:399–409

    Google Scholar 

  57. Zhuang XY, Chen L, Komarneni S et al (2016) Fly ash-based geopolymer: clean production, properties and applications. J Clean Prod 125:253–267

    Google Scholar 

  58. Shehata N, Mohamed OA, Sayed ET et al (2022) Geopolymer concrete as green building materials: recent applications, sustainable development and circular economy potentials. Sci Total Environ 836:155577

    Google Scholar 

  59. Alhawat M, Ashour A, Yildirim G et al (2022) Properties of geopolymers sourced from construction and demolition waste: a review. J Build Eng 50:104104

    Google Scholar 

  60. Luukkonen T, Abdollahnejad Z, Yliniemi J et al (2018) One-part alkali-activated materials: a review. Cem Concr Res 103:21–34

    Google Scholar 

  61. Elzeadani M, Bompa DV, Elghazouli AY (2022) One part alkali activated materials: a state-of-the-art review. J Build Eng 57:104871

    Google Scholar 

  62. Yang K-H, Song J-K, Ashour AF, Lee E-T (2008) Properties of cementless mortars activated by sodium silicate. Constr Build Mater 22:1981–1989

    Google Scholar 

  63. Yang K-H, Song J-K (2009) Workability loss and compressive strength development of cementless mortars activated by combination of sodium silicate and sodium hydroxide. J Mater Civ Eng 21:119–127

    Google Scholar 

  64. Wang K, Du L, Lv X et al (2017) Preparation of drying powder inorganic polymer cement based on alkali-activated slag technology. Powder Technol 312:204–209

    Google Scholar 

  65. Durak U (2023) The improvement of strength and microstructural properties of fly ash-based geopolymer by adding elemental aluminum powder. J Mater Cycles Waste Manag 25:157–170. https://doi.org/10.1007/s10163-022-01520-8

    Article  Google Scholar 

  66. Neupane K (2022) Evaluation of environmental sustainability of one-part geopolymer binder concrete. Clean Mater 6:100138. https://doi.org/10.1016/j.clema.2022.100138

    Article  Google Scholar 

  67. Sadeghian G, Behfarnia K, Teymouri M (2022) Drying shrinkage of one-part alkali-activated slag concrete. J Build Eng 51:104263. https://doi.org/10.1016/j.jobe.2022.104263

    Article  Google Scholar 

  68. Zhao J, Xie J, Wu J et al (2023) Workability, compressive strength, and microstructures of one-part rubberized geopolymer mortar. J Build Eng. https://doi.org/10.1016/j.jobe.2023.106088

    Article  Google Scholar 

  69. Elzeadani M, Bompa DV, Elghazouli AY (2023) Monotonic and cyclic constitutive behaviour of rubberised one-part alkali-activated concrete. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2023.130414

    Article  Google Scholar 

  70. Elzeadani M, Bompa DV, Elghazouli AY (2022) Experimental assessment and constitutive modelling of rubberised one-part alkali-activated concrete. Constr Build Mater 353:129161. https://doi.org/10.1016/j.conbuildmat.2022.129161

    Article  Google Scholar 

  71. Min Y, Wu J, Li B et al (2022) Physicochemical and mechanical behavior of the one-part geopolymer paste exposed to hydrochloric and sulfuric acids. J Mater Civ Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004621

    Article  Google Scholar 

  72. Min Y, Wu J, Li B et al (2022) Experimental study of freeze–thaw resistance of a one-part geopolymer paste. Case Studi Constr Mater 17:e01269. https://doi.org/10.1016/j.cscm.2022.e01269

    Article  Google Scholar 

  73. Yu T, Chen J, Guo H et al (2023) Mechanical properties and microstructure of ground granulated blast furnace slag-based geopolymer reinforced with polyvinyl alcohol fibers. J Mater Cycles Waste Manag 25(3):1719–1731. https://doi.org/10.1007/s10163-023-01646-3

    Article  Google Scholar 

  74. Wang M, Liu Y, Feng C et al (2022) Pozzolanic activity enhancement of magnesium-rich nickel slag and geopolymer preparation. J Mater Cycles Waste Manag 24:2598–2607. https://doi.org/10.1007/s10163-022-01507-5

    Article  Google Scholar 

  75. Liang X, Ji Y (2020) Preparation sequences and pretreatment optimization of alkali-activated red mud and blast furnace slag-based materials. J Mater Cycles Waste Manag 23:259–271. https://doi.org/10.1007/s10163-020-01126-y

    Article  Google Scholar 

  76. Hajimohammadi A, Ngo T, Mendis P et al (2017) Pore characteristics in one-part mix geopolymers foamed by H2O2: The impact of mix design. Mater Des 130:381–391

    Google Scholar 

  77. Sturm P, Gluth GJG, Brouwers HJH, Kühne H-C (2016) Synthesizing one-part geopolymers from rice husk ash. Constr Build Mater 124:961–966

    Google Scholar 

  78. Bao S, Luo Y, Zhang Y (2022) Fabrication of green one-part geopolymer from silica-rich vanadium tailing via thermal activation and modification. Int J Miner Metall Mater 29:177–184. https://doi.org/10.1007/s12613-020-2182-1

    Article  Google Scholar 

  79. Deng P, Zheng Z (2023) Mechanical properties of one-part geopolymer masonry mortar using alkali-fused lead-zinc tailings. Constr Build Mater 369:130522. https://doi.org/10.1016/j.conbuildmat.2023.130522

    Article  Google Scholar 

  80. Bah A, Feng D, Kedjanyi EAG et al (2022) Solidification of (Pb–Zn) mine tailings by fly ash-based geopolymer I: influence of alkali reagents ratio and curing condition on compressive strength. J Mater Cycles Waste Manag 24:351–363. https://doi.org/10.1007/s10163-021-01322-4

    Article  Google Scholar 

  81. Ahmari S, Zhang L (2012) Production of eco-friendly bricks from copper mine tailings through geopolymerization. Constr Build Mater 29:323–331

    Google Scholar 

  82. Liu Q, Li X, Cui M et al (2021) Preparation of eco-friendly one-part geopolymers from gold mine tailings by alkaline hydrothermal activation. J Clean Prod 298:126806

    Google Scholar 

  83. Almalkawi AT, Hamadna S, Soroushian P (2017) One-part alkali activated cement based volcanic pumice. Constr Build Mater 152:367–374

    Google Scholar 

  84. Lima FS, Gomes TCF, de Moraes JCB (2022) Novel one-part alkali-activated binder produced with coffee husk ash. Mater Lett 313:131733. https://doi.org/10.1016/j.matlet.2022.131733

    Article  Google Scholar 

  85. Dişçi E, Polat R (2022) The influence of nano-CaO and nano-Al2O3 and curing conditions on perlite based geopolymer concrete produced by the one-part mixing method. Constr Build Mater 346:128484. https://doi.org/10.1016/j.conbuildmat.2022.128484

    Article  Google Scholar 

  86. Cyriaque Kaze R, Naghizadeh A, Tchadjie L et al (2022) Lateritic soils based geopolymer materials: a review. Constr Build Mater 344:128157

    Google Scholar 

  87. Mukhtiar F, Kumar R, Kumar A et al (2022) Effect of marble powder on fly ash based one part geopolymer mortar. Int Res J Mod Eng Technol Sci 4(6):567–572

    Google Scholar 

  88. Das SK, Shrivastava S (2022) Durability analysis and optimization of a binary system of waste cement concrete and glass-based geopolymer mortar. J Mater Cycles Waste Manag 24:1281–1294. https://doi.org/10.1007/s10163-022-01400-1

    Article  Google Scholar 

  89. Dadsetan S, Siad H, Lachemi M et al (2022) Sodium glass liquid from glass waste as a user-friendly hardener in structural geopolymer systems. Cem Concr Compos 130:104525. https://doi.org/10.1016/j.cemconcomp.2022.104525

    Article  Google Scholar 

  90. Dadsetan S, Siad H, Lachemi M et al (2022) Optimization and characterization of geopolymer binders from ceramic waste, glass waste and sodium glass liquid. J Clean Prod 342:130931. https://doi.org/10.1016/j.jclepro.2022.130931

    Article  Google Scholar 

  91. Saxena R, Gupta T (2022) Assessment of mechanical, durability and microstructural properties of geopolymer concrete containing ceramic tile waste. J Mater Cycles Waste Manag 24:725–742. https://doi.org/10.1007/s10163-022-01353-5

    Article  Google Scholar 

  92. Dong M, Elchalakani M, Karrech A (2020) Development of high strength one-part geopolymer mortar using sodium metasilicate. Constr Build Mater 236:117611

    Google Scholar 

  93. Yang J, Bai H, He X et al (2023) Performances and microstructure of one-part fly ash geopolymer activated by calcium carbide slag and sodium metasilicate powder. Constr Build Mater 367:130303. https://doi.org/10.1016/j.conbuildmat.2023.130303

    Article  Google Scholar 

  94. Yusslee E, Beskhyroun S (2022) The potential of one-part alkali-activated materials (AAMs) as a concrete patch mortar. Sci Rep 12(1):15902. https://doi.org/10.1038/s41598-022-19830-0

    Article  Google Scholar 

  95. Wang Y-S, Alrefaei Y, Dai J-G (2021) Roles of hybrid activators in improving the early-age properties of one-part geopolymer pastes. Constr Build Mater 306:124880

    Google Scholar 

  96. Wan-En O, Yun-Ming L, Cheng Yong H et al (2022) Effect of sodium aluminate on the fresh and hardened properties of fly ash-based one-part geopolymer. Arch Metall Materi 67:441–445. https://doi.org/10.2425/amm.2022.137775

    Article  Google Scholar 

  97. Yang T, Gao X, Zhang J et al (2022) Sulphate resistance of one-part geopolymer synthesized by calcium carbide residue-sodium carbonate-activation of slag. Compos B Eng 242:110024. https://doi.org/10.1016/j.compositesb.2022.110024

    Article  Google Scholar 

  98. Bayraktar OY, Tobbala DE, Turkoglu M et al (2023) Hemp fiber reinforced one-part alkali-activated composites with expanded perlite: Mechanical properties, microstructure analysis and high-temperature resistance. Constr Build Mater 363:129716. https://doi.org/10.1016/j.conbuildmat.2022.129716

    Article  Google Scholar 

  99. Mazzinghy DB, Figueiredo RAM, Parbhakar-Fox A et al (2022) Trialling one-part geopolymer production including iron ore tailings as fillers. Int J Min Reclam Environ 36:356–367. https://doi.org/10.1080/17480930.2022.2047271

    Article  Google Scholar 

  100. Wang Y, Wang X, Lou Y et al (2022) Effect of mechanical activation on reaction mechanism of one-part preparation fly ash/slag-based geopolymer. Adv Cem Res 34:412–426. https://doi.org/10.1680/jadcr.21.00033

    Article  Google Scholar 

  101. Wang S-D, Scrivener KL, Pratt PL (1994) Factors affecting the strength of alkali-activated slag. Cem Concr Res 24:1033–1043

    Google Scholar 

  102. Singh B, Ishwarya G, Gupta M, Bhattacharyya SK (2015) Geopolymer concrete: a review of some recent developments. Constr Build Mater 85:78–90

    Google Scholar 

  103. Singh B, Rahman MR, Paswan R, Bhattacharyya SK (2016) Effect of activator concentration on the strength, ITZ and drying shrinkage of fly ash/slag geopolymer concrete. Constr Build Mater 118:171–179

    Google Scholar 

  104. Pei M, Wang D, Hu X, Xu D (2000) Synthesis of sodium sulfanilate-phenol-formaldehyde condensate and its application as a superplasticizer in concrete. Cem Concr Res 30:1841–1845

    Google Scholar 

  105. Papayianni I, Tsohos G, Oikonomou N, Mavria P (2005) Influence of superplasticizer type and mix design parameters on the performance of them in concrete mixtures. Cem Concr Compos 27:217–222

    Google Scholar 

  106. Houst YF, Bowen P, Perche F et al (2008) Design and function of novel superplasticizers for more durable high performance concrete (superplast project). Cem Concr Res 38:1197–1209

    Google Scholar 

  107. Laskar AI, Bhattacharjee R (2013) Effect of plasticizer and superplasticizer on rheology of fly-ash-based geopolymer concrete. ACI Mater J 110(5):513–518

    Google Scholar 

  108. Mithanthaya IR, Marathe S, Rao NBS, Bhat V (2017) Influence of superplasticizer on the properties of geopolymer concrete using industrial wastes. Mater Today Proc 4:9803–9806

    Google Scholar 

  109. Gupta N, Gupta A, Saxena KK et al (2021) Mechanical and durability properties of geopolymer concrete composite at varying superplasticizer dosage. Mater Today Proc 44:12–16

    Google Scholar 

  110. Cheng Y, Cong P, Hao H et al (2022) Improving workability and mechanical properties of one-part waste brick power based-binders with superplasticizers. Constr Build Mater 335:127535. https://doi.org/10.1016/j.conbuildmat.2022.127535

    Article  Google Scholar 

  111. Criado M, Palomo A, Fernández-Jiménez A, Banfill PFG (2009) Alkali activated fly ash: effect of admixtures on paste rheology. Rheol Acta 48:447–455

    Google Scholar 

  112. Nematollahi B, Sanjayan J (2014) Effect of different superplasticizers and activator combinations on workability and strength of fly ash based geopolymer. Mater Des 57:667–672

    Google Scholar 

  113. Alrefaei Y, Wang Y-S, Dai J-G, Xu Q-F (2020) Effect of superplasticizers on properties of one-part Ca(OH)2/Na2SO4 activated geopolymer pastes. Constr Build Mater 241:117990

    Google Scholar 

  114. Luukkonen T, Abdollahnejad Z, Ohenoja K et al (2019) Suitability of commercial superplasticizers for one-part alkali-activated blast-furnace slag mortar. J Sustain Cem Based Mater 8:244–257

    Google Scholar 

  115. Oderji SY, Chen B, Shakya C et al (2019) Influence of superplasticizers and retarders on the workability and strength of one-part alkali-activated fly ash/slag binders cured at room temperature. Constr Build Mater 229:116891

    Google Scholar 

  116. Askarian M, Tao Z, Adam G, Samali B (2018) Mechanical properties of ambient cured one-part hybrid OPC-geopolymer concrete. Constr Build Mater 186:330–337

    Google Scholar 

  117. Peng MX, Wang ZH, Shen SH, Xiao QG (2015) Synthesis, characterization and mechanisms of one-part geopolymeric cement by calcining low-quality kaolin with alkali. Mater Struct 48:699–708

    Google Scholar 

  118. Almalkawi AT, Balchandra A, Soroushian P (2019) Potential of using industrial wastes for production of geopolymer binder as green construction materials. Constr Build Mater 220:516–524

    Google Scholar 

  119. Ke X, Bernal SA, Ye N et al (2015) One-part geopolymers based on thermally treated red mud/NaOH blends. J Am Ceram Soc 98:5–11

    Google Scholar 

  120. Luo Y, Bao S, Zhang Y (2020) Preparation of one-part geopolymeric precursors using vanadium tailing by thermal activation. J Am Ceram Soc 103:779–783

    Google Scholar 

  121. Liew Y-M, Heah C-Y, Li L et al (2017) Formation of one-part-mixing geopolymers and geopolymer ceramics from geopolymer powder. Constr Build Mater 156:9–18

    Google Scholar 

  122. Panitsa OA, Kioupis D, Kakali G (2022) Thermal and microwave synthesis of silica fume-based solid activator for the one-part geopolymerization of fly ash. Environ Sci Pollut Res 29:59513–59523. https://doi.org/10.1007/s11356-022-20081-9

    Article  Google Scholar 

  123. Kallamalayil Nassar A, Kathirvel P (2023) Effective utilization of agricultural waste in synthesizing activator for sustainable geopolymer technology. Constr Build Mater 362:129681. https://doi.org/10.1016/j.conbuildmat.2022.129681

    Article  Google Scholar 

  124. Perera DS, Uchida O, Vance ER, Finnie KS (2007) Influence of curing schedule on the integrity of geopolymers. J Mater Sci 42:3099–3106

    Google Scholar 

  125. Najafi Kani E, Allahverdi A (2009) Effects of curing time and temperature on strength development of inorganic polymeric binder based on natural pozzolan. J Mater Sci 44:3088–3097

    Google Scholar 

  126. Rovnaník P (2010) Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr Build Mater 24:1176–1183

    Google Scholar 

  127. Kumar EM, Perumal P, Ramamurthy K (2022) Alkali-activated aerated blends: interaction effect of slag with low and high calcium fly ash. J Mater Cycles Waste Manag 24:1378–1395. https://doi.org/10.1007/s10163-022-01434-5

    Article  Google Scholar 

  128. Palomo A, Grutzeck MW, Blanco MT (1999) Alkali-activated fly ashes: a cement for the future. Cem Concr Res 29:1323–1329

    Google Scholar 

  129. Provis JL, van Deventer JSJ (2007) Geopolymerisation kinetics. 2. Reaction kinetic modelling. Chem Eng Sci 62:2318–2329

    Google Scholar 

  130. Puertas F, Martínez-Ramírez S, Alonso S, Vázquez T (2000) Alkali-activated fly ash/slag cements: strength behaviour and hydration products. Cem Concr Res 30:1625–1631

    Google Scholar 

  131. Hardjito D, Wallah SE, Sumajouw DMJ, Rangan BV (2004) On the development of fly ash-based geopolymer concrete. Mater J 101:467–472

    Google Scholar 

  132. Jayajothi P, Kumutha R, Vijai K (2014) Properties of fly ash and GGBS based geopolymeric binder. Chem Sci Rev Lett 2:470–479

    Google Scholar 

  133. Alzaza A, Ohenoja K, Illikainen M (2021) Enhancing the mechanical and durability properties of subzero-cured one-part alkali-activated blast furnace slag mortar by using submicron metallurgical residue as an additive. Cem Concr Compos 122:104128

    Google Scholar 

  134. Chindaprasirt P, de Silva P, Sagoe-Crentsil K, Hanjitsuwan S (2012) Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems. J Mater Sci 47:4876–4883

    Google Scholar 

  135. Kumar S, Kumar R, Mehrotra SP (2010) Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. J Mater Sci 45:607–615

    Google Scholar 

  136. Puligilla S, Mondal P (2013) Role of slag in microstructural development and hardening of fly ash-slag geopolymer. Cem Concr Res 43:70–80

    Google Scholar 

  137. Durak U, Karahan O, Uzal B et al (2021) Influence of nano SiO2 and nano CaCO3 particles on strength, workability, and microstructural properties of fly ash-based geopolymer. Struct Concr 22:E352–E367. https://doi.org/10.1002/suco.201900479

    Article  Google Scholar 

  138. Blum A, Lasaga A (1988) Role of surface speciation in the low-temperature dissolution of minerals. Nature 331:431–433

    Google Scholar 

  139. Bickmore BR, Nagy KL, Gray AK, Brinkerhoff AR (2006) The effect of Al(OH)4 on the dissolution rate of quartz. Geochim Cosmochim Acta 70:290–305

    Google Scholar 

  140. Dove PM (1994) The dissolution kinetics of quartz in sodium chloride solutions at 25 degrees to 300 degrees C. Am J Sci 294:665–712

    Google Scholar 

  141. Matalkah F, Xu L, Wu W, Soroushian P (2017) Mechanochemical synthesis of one-part alkali aluminosilicate hydraulic cement. Mater Struct 50:1–12

    Google Scholar 

  142. van Jaarsveld JGS, van Deventer JSJ, Lukey GC (2003) The characterisation of source materials in fly ash-based geopolymers. Mater Lett 57:1272–1280

    Google Scholar 

  143. García-Lodeiro I, Palomo A, Fernández-Jiménez A, Macphee DE (2011) Compatibility studies between NASH and CASH gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cem Concr Res 41:923–931

    Google Scholar 

  144. García-Lodeiro I, Fernández-Jiménez A, Palomo A (2013) Variation in hybrid cements over time. alkaline activation of fly ash–portland cement blends. Cem Concr Res 52:112–122

    Google Scholar 

  145. Wan Q, Rao F, Song S et al (2017) Combination formation in the reinforcement of metakaolin geopolymers with quartz sand. Cem Concr Compos 80:115–122

    Google Scholar 

  146. Luo Q, Wang Y, Hong S et al (2021) Properties and microstructure of lithium-slag-based geopolymer by one-part mixing method. Constr Build Mater 273:121723

    Google Scholar 

  147. Hajimohammadi A, van Deventer JSJ (2017) Solid reactant-based geopolymers from rice hull ash and sodium aluminate. Waste Biomass Valorization 8:2131–2140

    Google Scholar 

  148. Palomo A, Fernández-Jiménez A, Kovalchuk G et al (2007) OPC-fly ash cementitious systems: study of gel binders produced during alkaline hydration. J Mater Sci 42:2958–2966

    Google Scholar 

  149. Askarian M, Tao Z, Samali B et al (2019) Mix composition and characterisation of one-part geopolymers with different activators. Constr Build Mater 225:526–537

    Google Scholar 

  150. Peng MX, Wang ZH, Xiao QG et al (2017) Effects of alkali on one-part alkali-activated cement synthesized by calcining bentonite with dolomite and Na2CO3. Appl Clay Sci 139:64–71

    Google Scholar 

  151. Suwan T, Fan M (2017) Effect of manufacturing process on the mechanisms and mechanical properties of fly ash-based geopolymer in ambient curing temperature. Mater Manuf Processes 32:461–467

    Google Scholar 

  152. Nematollahi B, Sanjayan J, Qiu J, Yang E-H (2017) High ductile behavior of a polyethylene fiber-reinforced one-part geopolymer composite: a micromechanics-based investigation. Arch Civ Mech Eng 17:555–563

    Google Scholar 

  153. Zhang H-Y, Liu J-C, Wu B (2021) Mechanical properties and reaction mechanism of one-part geopolymer mortars. Constr Build Mater 273:121973

    Google Scholar 

  154. Nematollahi B, Sanjayan J, Shaikh FUA (2015) Synthesis of heat and ambient cured one-part geopolymer mixes with different grades of sodium silicate. Ceram Int 41:5696–5704

    Google Scholar 

  155. Mohammed BS, Haruna S, Wahab MMA et al (2019) Mechanical and microstructural properties of high calcium fly ash one-part geopolymer cement made with granular activator. Heliyon 5:e02255

    Google Scholar 

  156. Bong SH, Nematollahi B, Xia M et al (2020) Properties of one-part geopolymer incorporating wollastonite as partial replacement of geopolymer precursor or sand. Mater Lett 263:127236

    Google Scholar 

  157. Yip CK, Lukey GC, Provis JL, van Deventer JSJ (2008) Effect of calcium silicate sources on geopolymerisation. Cem Concr Res 38:554–564

    Google Scholar 

  158. Satria J, Sugiarto A, Hardjito D (2017) Effect of variability of fly ash obtained from the same source on the characteristics of geopolymer. In: MATEC web of conferences. EDP Sciences, p 01026

  159. Adesanya E, Ohenoja K, Luukkonen T et al (2018) One-part geopolymer cement from slag and pretreated paper sludge. J Clean Prod 185:168–175

    Google Scholar 

  160. Samarakoon MH, Ranjith PG, Duan WH, de Silva VRS (2020) Properties of one-part fly ash/slag-based binders activated by thermally-treated waste glass/NaOH blends: a comparative study. Cem Concr Compos 112:103679

    Google Scholar 

  161. Rasuli MI, Tajunnisa Y, Yamamura A, Shigeishi M (2022) A consideration on the one-part mixing method of alkali-activated material: problems of sodium silicate solubility and quick setting. Heliyon 8:e08783

    Google Scholar 

  162. Gawwad HAA, Abd El-Aleem S, Ouda AS (2016) Preparation and characterization of one-part non-Portland cement. Ceram Int 42:220–228

    Google Scholar 

  163. EN NF (2012) 197-1. Cement—part 1: composition. specifications and conformity criteria for common cements. European Committee For Standardisation, London

    Google Scholar 

  164. Pham T-T, Nguyen N-L, Nguyen T-T et al (2022) Mix proportion and mechanical properties of one-part alkali-activated geopolymer concrete. SSRN 4168577

  165. Teo W, Shirai K, Lim JH et al (2022) Experimental investigation on ambient-cured one-part alkali-activated binders using combined high-calcium fly ash (HCFA) and ground granulated blast furnace slag (GGBS). Materials 15(4):1612. https://doi.org/10.3390/ma15041612

    Article  Google Scholar 

  166. Guo S, Ma C, Long G, Xie Y (2019) Cleaner one-part geopolymer prepared by introducing fly ash sinking spherical beads: properties and geopolymerization mechanism. J Clean Prod 219:686–697

    Google Scholar 

  167. Perumal P, Nguyen H, Carvelli V et al (2022) High strength fiber reinforced one-part alkali activated slag composites from industrial side streams. Constr Build Mater 319:126124. https://doi.org/10.1016/j.conbuildmat.2021.126124

    Article  Google Scholar 

  168. Law DW, Adam AA, Molyneaux TK et al (2015) Long term durability properties of class F fly ash geopolymer concrete. Mater Struct 48:721–731

    Google Scholar 

  169. Okoye FN, Prakash S, Singh NB (2017) Durability of fly ash based geopolymer concrete in the presence of silica fume. J Clean Prod 149:1062–1067

    Google Scholar 

  170. Ma C, Long G, Shi Y, Xie Y (2018) Preparation of cleaner one-part geopolymer by investigating different types of commercial sodium metasilicate in China. J Clean Prod 201:636–647

    Google Scholar 

  171. Wan-En O, Yun-Ming L, Li-Ngee H et al (2020) The effect of sodium carbonate on the fresh and hardened properties of fly ash-based one-part geopolymer. IOP Conf Ser Mater Sci Eng 864(1):012197

    Google Scholar 

  172. Vu TH, Gowripalan N, de Silva P et al (2020) Assessing carbonation in one-part fly ash/slag geopolymer mortar: change in pore characteristics using the state-of-the-art technique neutron tomography. Cem Concr Compos 114:103759

    Google Scholar 

  173. Sturm P, Gluth GJG, Jäger C et al (2018) Sulfuric acid resistance of one-part alkali-activated mortars. Cem Concr Res 109:54–63

    Google Scholar 

  174. Xu L-Y, Qian L-P, Huang B-T, Dai J-G (2021) Development of artificial one-part geopolymer lightweight aggregates by crushing technique. J Clean Prod 315:128200

    Google Scholar 

  175. Ahmad MR, Chen B, Haque MA, Oderji SY (2020) Multiproperty characterization of cleaner and energy-efficient vegetal concrete based on one-part geopolymer binder. J Clean Prod 253:119916

    Google Scholar 

  176. Agrawal Y, Gupta T, Sharma RK (2022) Strength and durability assessment of concrete containing dolomite quarry waste as fine aggregate. J Mater Cycles Waste Manag 24:268–286. https://doi.org/10.1007/s10163-021-01318-0

    Article  Google Scholar 

  177. Marinković SB (2013) Life cycle assessment (LCA) aspects of concrete. Eco-efficient concrete. Woodhead Publishing, Elsevier, Cambridge, pp 45–80

    Google Scholar 

  178. Crawford R (2011) Life cycle assessment in the built environment. Taylor & Francis, Routledge, London

    Google Scholar 

  179. Hong T, Ji C, Park H (2012) Integrated model for assessing the cost and CO2 emission (IMACC) for sustainable structural design in ready-mix concrete. J Environ Manag 103:1–8

    Google Scholar 

  180. Ouellet-Plamondon C, Habert G (2015) Life cycle assessment (LCA) of alkali-activated cements and concretes. Handbook of alkali-activated cements, mortars and concretes. Woodhead Publishing, Elsevier, Cambridge, pp 663–686

    Google Scholar 

  181. Petrillo A, de Felice F, Jannelli E et al (2016) Life cycle assessment (LCA) and life cycle cost (LCC) analysis model for a stand-alone hybrid renewable energy system. Renew Energy 95:337–355

    Google Scholar 

  182. Adesina A (2021) Performance and sustainability overview of sodium carbonate activated slag materials cured at ambient temperature. Resour Environ Sustain 3:100016

    Google Scholar 

  183. Migunthanna J, Rajeev P, Sanjayan J (2021) Investigation of waste clay brick as partial replacement of geopolymer binders for rigid pavement application. Constr Build Mater 305:124787

    Google Scholar 

  184. Nematollahi B, Sanjayan J, Qiu J, Yang E-H (2017) Micromechanics-based investigation of a sustainable ambient temperature cured one-part strain hardening geopolymer composite. Constr Build Mater 131:552–563

    Google Scholar 

  185. Heath A, Paine K, McManus M (2014) Minimising the global warming potential of clay based geopolymers. J Clean Prod 78:75–83

    Google Scholar 

  186. Samarakoon MH, Ranjith PG, Duan WH et al (2021) Extensive use of waste glass in one-part alkali-activated materials: towards sustainable construction practices. Waste Manag 130:1–11

    Google Scholar 

  187. Singh S, Pal B, Badkul A (2023) A report on cost viability of single component geopolymer concrete in construction, CSIR-Central Building Research Institute, Roorkee, India

  188. Matalkah F, Salem T, Shaafaey M, Soroushian P (2019) Drying shrinkage of alkali activated binders cured at room temperature. Constr Build Mater 201:563–570

    Google Scholar 

  189. Acker P, Ulm FJ (2001) Creep and shrinkage of concrete: physical origins and practical measurements. Nucl Eng Des 203:143–158. https://doi.org/10.1016/S0029-5493(00)00304-6

    Article  Google Scholar 

  190. Aydin AC, Arslan A, Gül R (2007) Mesoscale simulation of cement based materials’ time-dependent behavior. Comput Mater Sci 41:20–26. https://doi.org/10.1016/J.COMMATSCI.2007.02.012

    Article  Google Scholar 

  191. Pal B, Ramaswamy A (2023) A multi-physics-based approach to predict mechanical behavior of concrete element in a multi-scale framework. Mech Mater 176:104509. https://doi.org/10.1016/J.MECHMAT.2022.104509

    Article  Google Scholar 

  192. Rupasinghe M, Mendis P, Ngo T et al (2017) Compressive strength prediction of nano-silica incorporated cement systems based on a multiscale approach. Mater Des 115:379–392. https://doi.org/10.1016/j.matdes.2016.11.058

    Article  Google Scholar 

  193. Yang T, Zhang Z, Zhu H et al (2019) Effects of calcined dolomite addition on reaction kinetics of one-part sodium carbonate-activated slag cements. Constr Build Mater 211:329–336

    Google Scholar 

  194. Alrefaei Y, Dai J-G (2018) Tensile behavior and microstructure of hybrid fiber ambient cured one-part engineered geopolymer composites. Constr Build Mater 184:419–431

    Google Scholar 

  195. Geraldo RH, Gonçalves JP, Camarini G (2023) Mechanical properties of an eco-friendly one-part alkali-activated binder: Influence of metakaolin and water content. Ceram Int 49(8):11854–11864. https://doi.org/10.1016/j.ceramint.2022.12.032

    Article  Google Scholar 

  196. Haruna S, Mohammed BS, Wahab MMA, Al-Fakih A (2021) Effect of aggregate-binder proportion and curing technique on the strength and water absorption of fly ash-based one-part geopolymer mortars. IOP Conf Ser Mater Sci Eng 1101:012022. https://doi.org/10.1088/1757-899X/1101/1/012022

    Article  Google Scholar 

  197. Shah SFA, Chen B, Ahmad MR, Haque MA (2021) Development of cleaner one-part geopolymer from lithium slag. J Clean Prod 291:125241

    Google Scholar 

  198. Farhan NA, Sheikh MN, Hadi MNS (2019) Investigation of engineering properties of normal and high strength fly ash based geopolymer and alkali-activated slag concrete compared to ordinary Portland cement concrete. Constr Build Mater 196:26–42

    Google Scholar 

  199. Xia M, Nematollahi B, Sanjayan J (2019) Printability, accuracy and strength of geopolymer made using powder-based 3D printing for construction applications. Autom Constr 101:179–189

    Google Scholar 

  200. Hajimohammadi A, van Deventer JSJ (2017) Characterisation of one-part geopolymer binders made from fly ash. Waste Biomass Valorization 8:225–233

    Google Scholar 

  201. Haruna S, Mohammed BS, Wahab MMA (2020) Effect of GGBS slag on setting time and compressive strength of one-part geopolymer binders. J Infrastruct Facil Asset Manag 2(2):149–160

    Google Scholar 

  202. Mobili A, Tittarelli F, Rahier H (2020) One-part alkali-activated pastes and mortars prepared with metakaolin and biomass ash. Appl Sci 10:5610

    Google Scholar 

  203. Abdollahnejad Z, Miraldo S, Pacheco-Torgal F, Aguiar JB (2017) Cost-efficient one-part alkali-activated mortars with low global warming potential for floor heating systems applications. Eur J Environ Civ Eng 21:412–429

    Google Scholar 

  204. Lemougna PN, Adediran A, Yliniemi J et al (2020) Thermal stability of one-part metakaolin geopolymer composites containing high volume of spodumene tailings and glass wool. Cem Concr Compos 114:103792

    Google Scholar 

  205. Sturm P, Greiser S, Gluth GJG et al (2015) Degree of reaction and phase content of silica-based one-part geopolymers investigated using chemical and NMR spectroscopic methods. J Mater Sci 50:6768–6778

    Google Scholar 

  206. Kovtun M, Kearsley EP, Shekhovtsova J (2015) Dry powder alkali-activated slag cements. Adv Cem Res 27:447–456

    Google Scholar 

  207. Hajimohammadi A, Provis JL, van Deventer JSJ (2008) One-part geopolymer mixes from geothermal silica and sodium aluminate. Ind Eng Chem Res 47:9396–9405

    Google Scholar 

  208. Hajimohammadi A, Ngo T, Provis JL et al (2019) High strength/density ratio in a syntactic foam made from one-part mix geopolymer and cenospheres. Compos B Eng 173:106908

    Google Scholar 

  209. Feng D, Provis JL, van Deventer JSJ (2012) Thermal activation of albite for the synthesis of one-part mix geopolymers. J Am Ceram Soc 95:565–572

    Google Scholar 

  210. Abdel-Gawwad HA, Khalil KA (2018) Application of thermal treatment on cement kiln dust and feldspar to create one-part geopolymer cement. Constr Build Mater 187:231–237

    Google Scholar 

  211. Hassan HS, Abdel-Gawwad HA, Vásquez-García SR et al (2019) Cleaner production of one-part white geopolymer cement using pre-treated wood biomass ash and diatomite. J Clean Prod 209:1420–1428

    Google Scholar 

  212. Li L, Lu J-X, Zhang B, Poon C-S (2020) Rheology behavior of one-part alkali activated slag/glass powder (AASG) pastes. Constr Build Mater 258:120381

    Google Scholar 

  213. Ouyang S, Chen W, Zhang Z et al (2020) Experimental study of one-part geopolymer using different alkali sources. J Phys Conf Ser 1605:012155

    Google Scholar 

  214. Choo H, Lim S, Lee W, Lee C (2016) Compressive strength of one-part alkali activated fly ash using red mud as alkali supplier. Constr Build Mater 125:21–28

    Google Scholar 

  215. Gowripalan N, Vu T, de Silva P et al (2019) Influence of curing and retarder on early-age properties of powder geopolymer concrete. Concr Aust 45:41–46

    Google Scholar 

  216. Zhao Q, Ma C, Huang B, Lu X (2023) Development of alkali activated cementitious material from sewage sludge ash: two-part and one-part geopolymer. J Clean Prod 384:135547. https://doi.org/10.1016/j.jclepro.2022.135547

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.K., Badkul, A. & Pal, B. Sustainable next-generation single-component geopolymer binders: a review of mechano-chemical behaviour and life-cycle cost analysis. J Mater Cycles Waste Manag 26, 49–75 (2024). https://doi.org/10.1007/s10163-023-01852-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-023-01852-z

Keywords

Navigation