Skip to main content

Advertisement

Log in

The effect of alkaline pretreatment on the anaerobic digestion of fruit and vegetable wastes from a central food distribution market

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Anaerobic digestion of the organic fraction of municipal solid wastes is a well-established process for biogas production and various forms of pre-treating the biomass have been evaluated to increase the methane yield. The present study evaluated the pre-treatment of 14 fruits and vegetables wastes (FVW) samples from a central food distribution market, using sodium hydroxide (NaOH), varying the concentration (3 and 6%) and exposure time (24 and 48 h) to the alkali reagent. The biochemical methane potential (BMP) assays of the pretreated and untreated wastes were carried out under mesophilic conditions (37 ºC). Biogas generation by the residues treated with 3% NaOH generated an average of 65% more methane (≈127 NmLCH4.gVS−1) as compared to the untreated waste (77 NmLCH4.gVS−1) and 25% more than that treated with 6% NaOH (102 NmLCH4.gVS−1). Thus, we observed that doubling the pretreatment time and concentration of the chemical reagent did not result in greater methane production. This behavior could have been associated with the presence of some compounds (sodium, pesticides, etc.) that have an inhibitory effect in the aqueous solution. Finally, this study confirmed that the optimal conditions for the pretreatment and biodigestion phases must be reevaluated according to the nature of the substrate evaluated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AD:

Anaerobic digestion

C:

Cellulose

COD:

Chemical oxygen demand

FW:

Food waste

H:

Hemicellulose

MSW:

Municipal solid waste

RSS:

Residual sum of squares

TS:

Total solids

UTW:

Untreated waste

BMP:

Biochemical methane potential

CEASA:

Central food distribution market

FVW:

Fruit and vegetable waste

GHG:

Greenhouse gases

L:

Lignin

OFMSW:

Organic fraction of municipal solid wastes

STP:

Standard temperature and pressure

UASB:

Upflow anaerobic sludge blanket reactor

VS:

Volatile solids

References

  1. FAO, Food and Agriculture Organization of the United Nations (2014) Food wastage footprint – Full-cost accounting, Final Report. E-ISBN 978–92–5–108513–4

  2. Gustavsson J, Cederberg C, Sonesson U, Van Otterdijk R, Meybeck A (2011) Global food losses and food waste – Extent, causes and prevention. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy

    Google Scholar 

  3. Karthikeyan OP, Trably E, Mehariya S, Bernet N, Wonga JWC, Carrere H (2018) Pretreatment of food waste for methane and hydrogen recovery: a review. Bioresour Technol. https://doi.org/10.1016/j.biortech.2017.09.105

    Article  Google Scholar 

  4. Kasinath A, Fudala-Ksiazek S, Szopinska M, Bylinski H, Artichowicz W, Remiszewska-Skwarek A, Luczkiewicz A (2021) Biomass in biogas production: pretreatment and codigestion. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2021.111509

    Article  Google Scholar 

  5. Lopez VM, De La Cruz FB, Barlaz MA (2016) Chemical composition and methane potential of commercial food wastes. Waste Manage. https://doi.org/10.1016/j.wasman.2016.07.024

    Article  Google Scholar 

  6. Edwiges T, Frare L, Mayer B, Lins L, Triolo JM, Flotats X, Costa MSSM (2018) Influence of chemical composition on biochemical methane potential of fruit and vegetable waste. Waste Manage. https://doi.org/10.1016/j.wasman.2017.05.030

    Article  Google Scholar 

  7. Garcia-Peña EI, Parameswaran P, Kang DW, Canul-Chan M, Krajmalnik-Brown R (2011) Anaerobic digestion and co-digestion processes of vegetable and fruit residues: process and microbial ecology. Bioresour Technol. https://doi.org/10.1016/j.biortech.2011.07.068

    Article  Google Scholar 

  8. Pellera F-M, Gidarakos E (2016) Effect of substrate to inoculum ratio and inoculum type on the biochemical methane potential of solid agroindustrial waste. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2016.05.026

    Article  Google Scholar 

  9. Santos LA, Valença RB, Silva LCS, Holanda SHB, Silva AFV, Jucá JFT, Santos AFMS (2020) Methane generation potential through anaerobic digestion of fruit waste. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.120389

    Article  Google Scholar 

  10. Wang L, Shen F, Yuan H, Zou D, Liu Y, Zhu B, Li X (2014) Anaerobic co-digestion of kitchen waste and fruit/vegetable waste: lab-scale and pilot-scale studies. Waste Manage. https://doi.org/10.1016/j.wasman.2014.08.005

    Article  Google Scholar 

  11. Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2014.04.047

    Article  Google Scholar 

  12. Cai Y, Zheng Z, Schäfer F, Stinner W, Yuan X, Wang H, Cui Z, Wang X (2021) A review about pretreatment of lignocellulosic biomass in anaerobic digestion: achievement and challenge in Germany and China. J Clean Prod. https://doi.org/10.1016/j.jclepro.2021.126885

    Article  Google Scholar 

  13. Hernández-Beltrán JU, Hernández-De Lira IO, Cruz-Santos MM, Saucedo-Luevanos A, Hernández-Terán F, Balagurusamy N (2019) Insight into pretreatment methods of lignocellulosic biomass to increase biogas yield: current state, challenges, and opportunities. Appl Sci. https://doi.org/10.3390/app9183721

    Article  Google Scholar 

  14. Kamusoko R, Jingura RM, Parawira W, Sanyika WT (2019) Comparison of pretreatment methods that enhance biomethane production from crop residues - a systematic review. Biofuel Res J https://doi.org/10.18331/BRJ2019.6.4.4

  15. Zheng M, Li X, Li L, Yang X, He Y (2009) Enhancing anaerobic biogasification of corn stover through wet state NaOH pretreatment. Bioresour Technol. https://doi.org/10.1016/j.biortech.2009.05.045

    Article  Google Scholar 

  16. Günerhan Ü, Us E, Dumlu L, Yilmaz V, Carrère H, Perendeci AN (2020) Impacts of chemical-assisted thermal pretreatments on methane production from fruit and vegetable harvesting wastes: process optimization. Molecules. https://doi.org/10.3390/molecules25030500

    Article  Google Scholar 

  17. Zhang C, Li C, Liu C, Liu X, Wang J, Li S, Fan G, Zhang L (2013) Alkaline pretreatment for enhancement of biogas production from banana stem and swine manure by anaerobic codigestion. Bioresour Technol. https://doi.org/10.1016/j.biortech.2013.09.070

    Article  Google Scholar 

  18. Kaur M, Neetu PV, Y, Chauhan S, (2020) Effect of chemical pretreatment of sugarcane bagasse on biogas production. Mater Today Proc 21:1937–1942. https://doi.org/10.1016/j.matpr.2020.01.278

    Article  Google Scholar 

  19. Zhu J, Wan C, Li Y (2010) Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Bioresour Technol. https://doi.org/10.1016/j.biortech.2010.04.060

    Article  Google Scholar 

  20. He Y, Pang Y, Liu Y, Li X, Wang K (2008) Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production. Energy Fuels. https://doi.org/10.1021/ef8000967

    Article  Google Scholar 

  21. Cabrera E, Muñoz MJ, Martín R, Caro I, Curbelo C, Díaz AB (2014) Alkaline and alkaline peroxide pretreatments at mild temperature to enhance enzymatic hydrolysis of rice hulls and straw. Bioresour Technol. https://doi.org/10.1016/j.biortech.2014.05.103

    Article  Google Scholar 

  22. Chandra R, Takeuchi H, Hasegawa T, Kumar R (2012) Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy. https://doi.org/10.1016/j.energy.2012.04.029

    Article  Google Scholar 

  23. Senol H (2020) Enhancement in methane yield from anaerobic co-digestion of walnut shells and cattle manure. Environ Prog Sustain Energy. https://doi.org/10.1002/ep.13524

    Article  Google Scholar 

  24. Shen J, Zhang J, Wang W, Liu G, Chen C (2020) Assessment of pretreatment effects on anaerobic digestion of switchgrass: economics-energy-environment (3E) analysis. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2019.111957

    Article  Google Scholar 

  25. Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol. https://doi.org/10.1016/j.biortech.2015.08.085

    Article  Google Scholar 

  26. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci. https://doi.org/10.3390/ijms9091621

    Article  Google Scholar 

  27. Da Silva SPR, Palha MLAPF (2016) Inventário da biomassa produtora de biogás de Pernambuco. Recife, Brasil [in Portuguese]

  28. Embrapa – Empresa Brasileira de Pesquisa Agropecuária (2010) Procedimentos para análise lignocelulósica (Documentos, 236). 1st ed. Campina Grande, Brasil [in Portuguese005D

  29. Standard Methods Committee of the American Public Health Association, American Water Works Association, and Water Environment Federation (2017) 5220 Chemical Oxygen Demand (COD) In: Standard Methods for the Examination of Water and Wastewater (SMEWW). Washington, USA. https://doi.org/10.2105/SMWW.2882.103

  30. Perin JKH, Borth PLB, Torrecilhas AR, Cunha LS, Kuroda EK, Fernandes F (2020) Optimization of methane production parameters during anaerobic codigestion of food waste and garden waste. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.123130

    Article  Google Scholar 

  31. Santos Filho DA, Oliveira LRG, Fraga TJM, Motta Sobrinho MA, Jucá JFT (2020) Development of a horizontal reactor with radial agitation to synthesize bio-methane from biomass waste and domestic sewage sludge. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.120616

    Article  Google Scholar 

  32. Borth PLB, Perin JKH, Torrecilhas AR, Lopes DD, Santos SC, Kuroda EK, Fernandes F (2022) Pilot-scale anaerobic co-digestion of food and garden waste: methane potential, performance and microbial analysis. Biomass Bioenerg. https://doi.org/10.1016/j.biombioe.2021.106331

    Article  Google Scholar 

  33. Quadros TCF, Sicchieri IM, Fernandes F, Kuroda EK (2022) Selection of additive materials for anaerobic co-digestion of fruit and vegetable waste and layer chicken manure. Bioresour Technol. https://doi.org/10.1016/j.biortech.2022.127659

    Article  Google Scholar 

  34. Quadros TCF, Sicchieri IM, Perin JKH, Challiol AZ, Bortoloti MA, Fernandes F, Kuroda EK (2023) Valorization of fruit and vegetable waste by anaerobic digestion: definition of co-substrates and inoculum. Waste Biomass Valorization. https://doi.org/10.1007/s12649-022-01887-7

    Article  Google Scholar 

  35. Oliveira LRG, Santos Filho DA, Fraga TJM, Jucá JFT, Motta Sobrinho MA (2021) Kinetics assessment and modeling of biogas production by anaerobic digestion of food wastes and acclimated sewage sludge. J Mater Cycles Waste Manage. https://doi.org/10.1007/s10163-021-01248-x

    Article  Google Scholar 

  36. Abu-Reesh IM (2014) Kinetics of anaerobic digestion of labaneh whey in a batch reactor. Afr J Biotechnol. https://doi.org/10.5897/AJB2013.13310

    Article  Google Scholar 

  37. Morais NWS, Coelho MMH, Silva AS, Silva FSS, Ferreira TJT, Pereira EL, dos Santos AB (2021) Biochemical potential evaluation and kinetic modeling of methane production from six agro-industrial wastewaters in mixed culture. Environ Pollut. https://doi.org/10.1016/j.envpol.2021.116876

    Article  Google Scholar 

  38. Bouallagui H, Lahdheb H, Ben Romdan E, Rachdi B, Hamdi M (2009) Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. J Environ Manage. https://doi.org/10.1016/j.jenvman.2008.12.002

    Article  Google Scholar 

  39. Pavi S, Kramer LE, Gomes LP, Miranda LAS (2017) Biogas production from co-digestion of organic fraction of municipal solid waste and fruit and vegetable waste. Bioresour Technol. https://doi.org/10.1016/j.biortech.2017.01.003

    Article  Google Scholar 

  40. Chufo A, Yuan H, Zou D, Pang Y, Li X (2015) Biomethane production and physicochemical characterization of anaerobically digested teff (Eragrostis tef) straw pretreated by sodium hydroxide. Bioresour Technol. https://doi.org/10.1016/j.biortech.2015.01.054

    Article  Google Scholar 

  41. Alkanok G, Demirel B, Onay TT (2014) Determination of biogas generation potential as a renewable energy source from supermarket wastes. Waste Manage. https://doi.org/10.1016/j.wasman.2013.09.015

    Article  Google Scholar 

  42. Raposo F, De la Rubia MA, Fernández-Cegrí V, Borja R (2012) Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2011.09.008

    Article  Google Scholar 

  43. Chatterjee B, Mazumder D (2020) New approach of characterizing fruit and vegetable waste (FVW) to ascertain its biological stabilization via two-stage anaerobic digestion (AD). Biomass Bioenerg. https://doi.org/10.1016/j.biombioe.2020.105594

    Article  Google Scholar 

  44. Decottignies V, Galtier L, Lefebvre X, Villerio T (2005) Comparison of analytical methods to determine the stability of municipal solid waste and related wastes. Proceedings Sardinia 2005, Tenth International Waste Management and Landfill Symposium; Cagliari, Italy

  45. Pellera F-M, Santori S, Pomi R, Polettini A, Gidarakos E (2016) Effect of alkaline pretreatment on anaerobic digestion of olive mil solid waste. Waste Manage. https://doi.org/10.1016/j.wasman.2016.08.008

    Article  Google Scholar 

  46. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol. https://doi.org/10.1016/j.biortech.2008.05.027

    Article  Google Scholar 

  47. Di Maria F, Sordi A, Cirulli G, Gigliotti G, Massaccesi L, Cucina M (2014) Co-treatment of fruit and vegetable waste in sludge digesters. an analysis of the relationship among bio-methane generation, process stability and digestate phytotoxicity. Waste Manage. https://doi.org/10.1016/j.wasman.2014.05.017

    Article  Google Scholar 

  48. Li Y, Jin Y, Li H, Borrion A, Yu Z, Li J (2018) Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste. Appl Energy. https://doi.org/10.1016/j.apenergy.2018.01.033

    Article  Google Scholar 

  49. Mankar AR, Pandey A, Modak A, Pant KK (2021) Pretreatment of lignocellulosic biomass: a review on recent advances. Bioresour Technol. https://doi.org/10.1016/j.biortech.2021.125235

    Article  Google Scholar 

  50. Remigi EU, Buckley CA (2006) Co-digestion of high strength - toxic organic effluents in anaerobic digesters at wastewater treatment works. Durban, South Africa. ISBN 1–77005–430–8

  51. Calabrò PS, Greco R, Evangelou A, Komilis D (2015) Anaerobic digestion of tomato processing waste: effect of alkaline pretreatment. J Environ Manage. https://doi.org/10.1016/j.jenvman.2015.07.061

    Article  Google Scholar 

  52. Zhen G, Lu X, Kato H, Zhao Y, Li Y-Y (2017) Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: current advances, full-scale application and future perspectives. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2016.11.187

    Article  Google Scholar 

  53. Gunaseelan VN (2004) Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass Bioenerg. https://doi.org/10.1016/j.biombioe.2003.08.006

    Article  Google Scholar 

  54. Paudel SR, Banjara SP, Choi OK, Park KY, Kim YM, Lee JW (2017) Pretreatment of agricultural biomass for anaerobic digestion: current state and challenges. Bioresour Technol. https://doi.org/10.1016/j.biortech.2017.08.182

    Article  Google Scholar 

  55. Mancini G, Papirio S, Lens PNL, Esposito G (2018) Increased biogas production from wheat straw by chemical pretreatments. Renew Eng. https://doi.org/10.1016/j.renene.2017.12.045

    Article  Google Scholar 

  56. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol. https://doi.org/10.1016/j.biortech.2007.01.057

    Article  Google Scholar 

  57. Chen JL, Ortiz R, Steele TWJ, Stuckey DC (2014) Toxicants inhibiting anaerobic digestion: a review. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2014.10.005

    Article  Google Scholar 

  58. Yenigün O, Demirel B (2013) Ammonia inhibition in anaerobic digestion: a review. Process Biochem. https://doi.org/10.1016/j.procbio.2013.04.012

    Article  Google Scholar 

  59. Dasgupta A, Chandel MK (2020) Enhancement of biogas production from organic fraction of municipal solid waste using alkali pretreatment. J Mater Cycles Waste Manage. https://doi.org/10.1007/s10163-020-00970-2

    Article  Google Scholar 

  60. Carvalho A, Fragoso R, Gominho J, Duarte E (2017) Effect of minimizing d-limonene compound on anaerobic co-digestion feeding mixtures to improve methane yield. Waste Biomass Valorization. https://doi.org/10.1007/s12649-017-0048-1

    Article  Google Scholar 

  61. Cabrera LC, Pastor PM (2022) The 2020 European Union report on pesticide residues in food. European Food Safety Authority (EFSA), Scientific Report, https://doi.org/10.2903/j.efsa.2022.7215

  62. EWG – Environmental Working Group (2022) EWG’s 2022 Shopper’s Guide to Pesticides in Produce. April 7th. https://www.ewg.org/foodnews/summary.php. Accessed on 27 August 2022

  63. Pang YZ, Liu YP, Li XJ, Wang KS, Yuan HR (2008) Improving biodegradability and biogas production of corn stover through sodium hydroxide solid state pretreatment. Energy Fuels. https://doi.org/10.1021/ef800001n

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the National Council for Scientific and Technological Development—CNPq (Call CNPq 16/2020) and Foundation for Science and Technology of the Pernambuco State (FACEPE) for their financial support; Central Market for Food Distribution (CEASA/PE) and Solid Waste Group of the Federal University of Pernambuco (GRS/UFPE) for the technical support.

Funding

Conselho Nacional de Desenvolvimento Científico e Tecnológico,162675/2020-8,Waldir Schirmer,Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldir Nagel Schirmer.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 KB)

Supplementary file2 (DOCX 13 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schirmer, W.N., dos Santos, L.A., Martins, K.G. et al. The effect of alkaline pretreatment on the anaerobic digestion of fruit and vegetable wastes from a central food distribution market. J Mater Cycles Waste Manag 25, 2887–2899 (2023). https://doi.org/10.1007/s10163-023-01722-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-023-01722-8

Keywords

Navigation