Skip to main content

Advertisement

Log in

Brazilian banana, guava, and orange fruit and waste production as a potential biorefinery feedstock

  • REVIEW
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Fruit production worldwide is over 675 million tons per year. Brazil is responsible for the production of 43.6 million tons of fruits per year, which makes the country stand out in the generation of fruit and food residues. About 35% of all agricultural production in Brazil is wasted and, from that, 42% is destined for inappropriate places such as public roads and rivers, causing environmental, sanitary, and social impacts. From the total agricultural production, 16.8 million tons are orange, 7.1 million tons are banana, and 0.6 million tons are guava, which makes these fruits of great importance to the country and consequently generate a huge amount of residues. Besides that, the restaurants/food industries also discard a large volume of waste. The review shows the importance of these residues and a scenario of utilization in order to reduce environmental impacts and add value to them. Bioenergy and value-added products are from industrial interest and can collaborate in economic, social, and environmental aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted from FAO (2020) [32]

Fig. 3
Fig. 4

Adapted from FAO (2020) [32]. Guava production represents 15% of the total production of the mangoes, mangosteen, and guava category, according to OECD/FAO (2021) [45]

Fig. 5
Fig. 6

Adapted from FAO (2020) [32]

Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Villacís-Chiriboga J, Elst K, Van Camp J, Vera E, Ruales J (2020) Valorization of byproducts from tropical fruits: extraction methodologies, applications, environmental, and economic assessment: a review (Part 1: General overview of the byproducts, traditional biorefinery practices, and possible applications). Compr Rev Food Sci Food Saf 19:405–447. https://doi.org/10.1111/1541-4337.12542

    Article  Google Scholar 

  2. Dias MC (2003) Food thrown away. Braziliense Mail, 31 Ago 2003; Available in: http://www.consciencia.net/2003/09/06/comida.html. Accessed 21 August 2019

  3. Barcelos BR (2009) Evaluation of different inocula in the anaerobic digestion of the organic fraction of solid organic waste. Dissertation, University of Brasília

  4. Reynolds C, Goucher L, Quested T et al (2019) Consumption-stage food waste reduction interventions—what works and how to design better interventions. Food Policy 83:7–27. https://doi.org/10.1016/j.foodpol.2019.01.009

    Article  Google Scholar 

  5. Naspolini BF, Lussi C, Borges DS, Souza DBE, Rocha LA (2009) Diagnosis and proposal for improving the management of solid waste produced at the University Restaurant: Campus Cuiabá/UFMT. Braz Cong Sanit Environ Eng 25:1–7

    Google Scholar 

  6. Melati RB, Shimizu FL, Oliveira G, Pagnocca FC, Souza W, Sant’ Anna C, Brienzo M (2019) Key factors affecting the recalcitrance and conversion process of biomass. Bioenergy Res 12:1–20. https://doi.org/10.1007/s12155-018-9941-0

    Article  Google Scholar 

  7. Shimizu FL, Azevedo GO, Coelho LF, Pagnocca C, Brienzo M (2020) Minimum lignin and xylan removal to improve cellulose accessibility. Bioenergy Res 13:775–785. https://doi.org/10.1007/s12155-020-10120-z

    Article  Google Scholar 

  8. Schmatz AA, Tyhoda L, Brienzo M (2020) Sugarcane biomass conversion influenced by lignin. Biofuels Bioprod Bioref 14:469–480. https://doi.org/10.1002/bbb.2070

    Article  Google Scholar 

  9. Schmatz AA, Salazar-Bryam AM, Contiero J, Sant’ Anna C, Brienzo M (2020) Pseudo-lignin content decreased with hemicellulose and lignin removal, improving cellulose accessibility, and enzymatic digestibility. Bioenergy Res 14:106–121. https://doi.org/10.1007/s12155-020-10187-8

    Article  Google Scholar 

  10. Schmatz AA, Brienzo M (2021) Butylated hydroxytoluene improves lignin removal by organosolv pretreatment of sugarcane bagasse. Bioenergy Res. https://doi.org/10.1007/s12155-021-10317-w

    Article  Google Scholar 

  11. Ministry of Environment - Brazil (2017) Organic waste management. https://antigo.mma.gov.br/cidades-sustentaveis/residuos-solidos/gest%C3%A3o-de-res%C3%ADduos-org%C3%A2nicos.html. Accessed 10 September 2018

  12. Maya P, Nils-Georg A, Gregor R et al (2008) FAO technical meeting on prebiotics. J Clin Gastroenterol 42:156–159

    Article  Google Scholar 

  13. Maria Filho J (2017) Global overview of food waste. VP Functional Nutrition Center. https://www.vponline.com.br/portal/noticia/pdf/c1123b9d474c5026ef60d013f7cd3abf.pdf. Accessed 13 September 2018

  14. Pereira BS, Castrisana RN, De Freitas C, Contiero J, Brienzo M (2021) Chemical composition determines the bioenergy potential of food waste from pre- and post-production. J Mater Cycles Waste Manag 23:1365–1373. https://doi.org/10.1007/s10163-021-01215-6

    Article  Google Scholar 

  15. Institute of applied economic research—IPEA (2009) Waste—cost for all—food rots while millions of people go hungry. Development Challenges. https://www.ipea.gov.br/desafios/index.php?option=com_content&view=article&id=1256:catid=28&Itemid=23. Accessed 13 September 2018

  16. Brazilian Association of Public Companies and Special Waste (2011) Panorama of solid waste in Brazil, 2011. Abrelpe. http://a3p.jbrj.gov.br/pdf/ABRELPE%20Panorama%202001%20RSU-1.pdf. Accessed 15 September 2018

  17. Move for hunger (2018) The environmental impact of food waste. Move for Hunger. https://moveforhunger.org/the-environmental-impact-of-food-waste. Accessed 26 July 2018

  18. Crittenden B, Kolaczkowski S (1995) Waste minimization: a practical guide. IchemE, Rugby

  19. Granda A (2017) Fruticulture adds up to R$ 33 billion in 2016. Agência Brasil. https://agenciabrasil.ebc.com.br/economia/noticia/2017-09/fruticultura-tem-valor-de-producao-recorde-em-2016-com-r-333-bilhoes. Accessed 03 January 2019

  20. Andrade PFS (2019) Analysis of the agricultural situation in the 2016/17 harvest. Secretariat of Agriculture and Supply. https://www.agricultura.pr.gov.br/Pagina/Fruticultura-48. Accessed 15 March 2019

  21. Kist BB (2018) Brazilian fruticulture yearbook 2018. Editora Gazeta, Santa Cruz do Sul

  22. G1 São Carlos and Araraquara (2018) Guava harvest should increase 9.26% and Matão producers invest in cultivation. G1 Globo. https://g1.globo.com/sp/sao-carlos-regiao/noticia/safra-de-goiaba-deve-aumentar-926-e-produtores-de-matao-investem-no-cultivo.ghtml. Accessed 17 March 2019

  23. Pommer CV, Murakami KRN, Watlington F (2006) Guava in the world. O Agronôm 58:22–26

    Google Scholar 

  24. Freitas SM, Fredo CE (2019) Dynamics of São Paulo fruticulture: market aspects 2013–2017. Agricultural Economics Institute. http://www.iea.sp.gov.br/ftpiea/AIA/AIA-21-2019.pdf. Accessed 20 March 2021

  25. Toda Fruta (2016) Banana. Toda Fruta. http://www.todafruta.com.br/banana/. Accessed 20 March 2021

  26. Lima AGB, Nebra SA, Queiroz MR (2000) Banana scientific and technological aspects. Braz Mag Agroindust Prod 2:87–101

    Google Scholar 

  27. Falcomer AL, Riquette R, De Lima BR, Ginani VC, Zandonadi RP (2019) Health benefits of green banana consumption: a systematic review. Nutrients 11:1222–1243. https://doi.org/10.3390/nu11061222

    Article  Google Scholar 

  28. Lima MB, Silva SO, Ferreira CF (2012) The producer asks, Embrapa answers. Embrapa, Brasília

  29. Brazilian Institute of Geography and Statistics—IBGE (2019) Systematic survey of agricultural production, Table 1618. Sidra. https://sidra.ibge.gov.br/tabela/1618#notas-tabela. Accessed 23 March 2021

  30. Secretariat of Agriculture and Supply of Paraná—SEAB (2017) Fruticulture 2016/17. SEAB. https://www.agricultura.pr.gov.br/Pagina/Prognostico. Accessed 25 March 2021

  31. Tarrés Q, Espinosa E, Domínguez-Robles J, Rodríguez A, Mutjé P, Delgado-Aguilar M (2017) The suitability of banana leaf residue as raw material for the production of high lignin content micro/nano fibers: from residue to value-added products. Ind Crops Prod 99:27–33. https://doi.org/10.1016/j.indcrop.2017.01.021

    Article  Google Scholar 

  32. Food and Agriculture Organization of the United Nations (2020) FAOSTAT: Countries by commodity. https://www.fao.org/faostat/en/#rankings/countries_by_commodity. Accessed 31 May 2022

  33. Baptistella CSL (2019) Banana farming in the State of São Paulo: 2014 to 2018. Agricultural Economics Institute. http://www.iea.agricultura.sp.gov.br/out/LerTexto.php?codTexto=14716. Accessed 26 May 2022

  34. Acevedo SA, Carrillo AJD, Flórez-López E et al (2021) Recovery of banana waste-loss from production and processing: a contribution to a circular economy. Molecules 26:5282–5312. https://doi.org/10.3390/molecules26175282

    Article  Google Scholar 

  35. Brazilian Institute of Geography and Statistics—IBGE (2018) Municipal agricultural production, permanent crops (Table 4). https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9117-producao-agricola-municipal-culturas-temporarias-e-permanentes.html?edicao=25369&t=resultados. Accessed 26 May 2022

  36. Brazilian institute of geography and statistics—IBGE (2017) Censo Agro 2017: Guava—São Paulo State. https://censoagro2017.ibge.gov.br/templates/censo_agro/resultadosagro/agricultura.html?localidade=35&tema=76300. Accessed 26 May 2022

  37. Souza HA, Rozane DE, Amorim DA, Modesto VC, Natale W (2014) Fertilizer use of the by-product of the guava processing agroindustry I: soil chemical attributes. Rev Bras Frutic 36:713–724. https://doi.org/10.1590/0100-2945-355/13

    Article  Google Scholar 

  38. Brazilian institute of geography and statistics—IBGE (2017) Censo Agro 2017: Orange—São Paulo State. https://censoagro2017.ibge.gov.br/templates/censo_agro/resultadosagro/agricultura.html?localidade=35&tema=76321. Accessed 26 May 2022

  39. Brazilian Institute of Geography and Statistics—IBGE (2017) Municipal agricultural production, informative. https://biblioteca.ibge.gov.br/visualizacao/periodicos/66/pam_2017_v44_br_informativo.pdf. Accessed 27 May 2022

  40. Satari B, Karimi K (2018) Citrus processing wastes: Environmental impacts, recent advances, and future perspectives in total valorization. Resour Conserv Recycl 129:153–167. https://doi.org/10.1016/j.resconrec.2017.10.032

    Article  Google Scholar 

  41. Bornal DR, Silvestrini MM, Pio LAS et al (2021) Brazilian position in the international fresh fruit trade network. Rev Bras Frutic 43:1–13. https://doi.org/10.1590/0100-29452021021

    Article  Google Scholar 

  42. United States Department of Agriculture (2021) Brazil: citrus semi-annual. https://www.fas.usda.gov/data/brazil-citrus-semi-annual-5. Accessed 02 June 2022

  43. Lana MM (2016) Working station: infrastructure for vegetable harvesting and postharvest handling in small farms. Hortic Bras 34:443–447. https://doi.org/10.1590/S0102-05362016003023

    Article  Google Scholar 

  44. Queiroz VAV, Berbert PA, Molina MAB, Gravina GA, Queiroz LR, Silva JA (2008) Nutritional quality of osmo-convective dried guavas. Food Sci Technol 28:329–340. https://doi.org/10.1590/S0101-20612008000200010

    Article  Google Scholar 

  45. OECD/FAO (2021) OECD-FAO Agricultural Outlook 2021–2030. https://www.fao.org/3/cb5332en/cb5332en.pdf. Accessed 31 May 2022

  46. Francisco VLFS, Baptistella CSL, Amaro AA (2005) Guava culture in São Paulo. Agricultural economics institute. http://www.iea.sp.gov.br/out/verTexto.php?codTexto=1902. Accessed 04 April 2021

  47. Barbosa FR, Lima MF (2010) Guava culture. Embrapa, Brasília

  48. Gonzaga LN (2007) Guava production. Instituto Frutal. https://prof-vanderufersa.webnode.com.br/_files/200000043-0232a032cb/produ%C3%A7%C3%A3o%20de%20goiaba.pdf. Accessed 12 April 2021

  49. Silva AC, Jorge N (2014) Bioactive compounds of the lipid fractions of agroindustrial waste. Food Res Int 66:493–500. https://doi.org/10.1016/j.foodres.2014.10.025

    Article  Google Scholar 

  50. Mirabella N, Castellani V, Sala S (2014) Current options for the valorization of food manufacturing waste: a review. J Clean Prod 65:28–41. https://doi.org/10.1016/j.jclepro.2013.10.051

    Article  Google Scholar 

  51. Schieber A, Stintzing FC, Carle R (2001) By-products of plant food processing as a source of functional compounds—recent developments. Trends Food Sci Technol 12:401–413. https://doi.org/10.1016/S0924-2244(02)00012-2

    Article  Google Scholar 

  52. Formigoni I (2018) Pear orange: its benefits and nutritional value. Food News Oficial. http://www.foodnewsoficial.com.br/noticias-e-eventos/laranja-pera/. Accessed 17 April 2021

  53. Ortiz-Sanchez M, Solarte-Toro J, Orrego-Alzate C, Cardona-Alzate CA (2021) Integral use of orange peel waste through the biorefinery concept: an experimental, technical, energy, and economic assessment. Biomass Conv Biorefin 11:645–659. https://doi.org/10.1007/s13399-020-00627-y

    Article  Google Scholar 

  54. Vassilev SV, Baxter D, Anderson LK, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel 89:913–933. https://doi.org/10.1016/j.fuel.2009.10.022

    Article  Google Scholar 

  55. Houfani AA, Anders N, Spiess AC, Baldrian P, Benallaoua S (2020) Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars—a review. Biomass Bioenerg 134:1–13. https://doi.org/10.1016/j.biombioe.2020.105481

    Article  Google Scholar 

  56. Brienzo M, Ferreira S, Vicentim MP et al (2014) Comparison study on the biomass recalcitrance of different tissue fractions of sugarcane culm. BioEnergy Res 7:1454–1465. https://doi.org/10.1007/s12155-014-9487-8

    Article  Google Scholar 

  57. Pereira MAF, Monteiro CRM, Pereira GN et al (2021) Deconstruction of banana peel for carbohydrate fractionation. Bioprocess Biosyst Eng 44:297–306. https://doi.org/10.1007/s00449-020-02442-1

    Article  Google Scholar 

  58. Sun S, Sun S, Cao X, Sun R (2016) The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol 199:49–58. https://doi.org/10.1016/j.biortech.2015.08.061

    Article  Google Scholar 

  59. Matthaus B, Özcan MM (2012) Chemical evaluation of citrus seeds, an agro-industrial waste, as a new potential source of vegetable oils. Grasas Aceites 63:313–320. https://doi.org/10.3989/gya.118411

    Article  Google Scholar 

  60. El-adawy TA, Rahma EH, El-Bedawy AA, Gafar AM (1999) Properties of some citrus seeds. Part 3. evaluation as a new source of protein and oil. Nahrung 43:385–391. https://doi.org/10.1002/(SICI)1521-3803(19991201)43:6%3c385::AID-FOOD385%3e3.0.CO;2-V

    Article  Google Scholar 

  61. Kapoor S, Gandhi N, Tyagi SK, Kaur A, Mahajan BVC (2020) Extraction and characterization of guava seed oil: a novel industrial byproduct. LWT 132:1–9. https://doi.org/10.1016/j.lwt.2020.109882

    Article  Google Scholar 

  62. Lu Y, Lu Y, Hu H, Xie F, Wei F, Fan X (2017) Structural characterization of lignin and its degradation products with spectroscopic methods. J Spectrosc 2017:1–15. https://doi.org/10.1155/2017/8951658

    Article  Google Scholar 

  63. Sun R (2020) Lignin source and structural characterization. Chemsuschem 13:4385–4393. https://doi.org/10.1002/cssc.202001699

    Article  Google Scholar 

  64. Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) determination of extractives in biomass: laboratory analytical procedure (LAP); Issue Date 7/17/2005.

  65. Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of ash in biomass: laboratory analytical procedure (LAP); Issue Date: 7/17/2005.

  66. Locatelli GO, Finkler L, Finkler CLL (2019) Orange and passion fruit wastes characterization, substrate hydrolysis and cell growth of cupriavidus necator, as proposal to converting of residues in high value added product. An Acad Bras Ciênc 91:1–9. https://doi.org/10.1590/0001-3765201920180058

    Article  Google Scholar 

  67. Polanco-Lugo E, Marínez-Castillo JI, Cuevas-Bernadino JC et al (2019) Citrus pectin obtained by ultrasound-assisted extraction: Physicochemical, structural, rheological and functional properties. CyTA J Food 17:463–471. https://doi.org/10.1080/19476337.2019.1600036

    Article  Google Scholar 

  68. Shimuzu FL, Monteiro PQ, Ghiraldi PHC et al (2018) Acid, alkali and peroxide pretreatments increase the cellulose accessibility and glucose yield of banana pseudostem. Ind Crops Prod 115:62–68. https://doi.org/10.1016/j.indcrop.2018.02.024

    Article  Google Scholar 

  69. Cordeiro N, Belgacem MN, Torres IC, Moura JCVP (2004) Chemical composition and pulping of banana pseudo-stems. Ind Crops Prod 19:147–154. https://doi.org/10.1016/j.indcrop.2003.09.001

    Article  Google Scholar 

  70. Li K, Fu S, Zhan H, Zhan Y, Lucia LA (2010) Analysis of the chemical composition and morphological structure of banana pseudo-stem. BioResour 5:576–585

    Google Scholar 

  71. Fernandes ERK, Marangoni C, Souza O, Sellin N (2013) Thermochemical characterization of banana leaves as a potential energy source. Energy Conv Manag 75:603–608. https://doi.org/10.1016/j.enconman.2013.08.008

    Article  Google Scholar 

  72. Alzate-Arbeláez AF, Dorta E, López-Alarcón C, Cortés FB, Rojano BA (2019) Immobilization of Andean berry (Vaccinium meridionale) polyphenols on nanocellulose isolated from banana residues: a natural food additive with antioxidant properties. Food Chem 294:503–517. https://doi.org/10.1016/j.foodchem.2019.05.085

    Article  Google Scholar 

  73. Bhattacharjee N, Biswas AB (2020) Physicochemical analysis and kinetic study of orange bagasse at higher heating rates. Fuel 271:1–13. https://doi.org/10.1016/j.fuel.2020.117642

    Article  Google Scholar 

  74. Mantovan J, Giraldo GAG, Marim BM, Kishima JOF, Malt S (2021) Valorization of orange bagasse through one-step physical and chemical combined processes to obtain a cellulose-rich material. J Sci Food Agric 101:2362–2370. https://doi.org/10.1002/jsfa.10859

    Article  Google Scholar 

  75. Largitte L, Brudey T, Tant T, Dumesnil PC, Lodewyckx P (2016) Comparison of the adsorption of lead by activated carbons from three lignocellulosic precursors. Microporous Mesoporous Mater 219:265–275. https://doi.org/10.1016/j.micromeso.2015.07.005

    Article  Google Scholar 

  76. Uchôa-Thomaz AMA, Sousa EC, Carioca JOB et al (2014) Chemical composition, fatty acid profile and bioactive compounds of guava seeds (Psidium guajava L.). Food Sci Technol 34:485–492. https://doi.org/10.1590/1678-457x.6339

    Article  Google Scholar 

  77. Jiménez-Escrig A, Rincón M, Pulido R, Saura-Calixto F (2001) Guava fruit (Psidium guajava L.) as a new source of antioxidant dietary fiber. J Agric Food Chem 49:5489–5493. https://doi.org/10.1021/jf010147p

    Article  Google Scholar 

  78. Sumiyati S, Huboyo HS, Ramadan BS (2019) Potential use of banana plant (Musa spp.) as bio-sorbent materials for controlling gaseous pollutants. E3S Web Conf 125:1–6. https://doi.org/10.1051/e3sconf/201912503015

  79. Leite KMSC, De Assis SA, Tadiotti AC, Oliveira OMMF (2009) Evaluation of guava during different phases of the industrial processing. Int J Food Sci Nutr 60:81–88. https://doi.org/10.1080/09637480802541298

    Article  Google Scholar 

  80. Yusof R, Zaini SZA, Azman MA (2020) Characterization of pectin extracted from guava peels using deep eutectic solvent and citric acid. In: Alias NZ, Yusof R (eds) Charting the sustainable future of ASEAN in science and technology. Springer, Singapore, pp 421–433

    Chapter  Google Scholar 

  81. Brazilian Association of Restaurant Bars—Abrasel (2007) The conscious use of ingredients. São Paulo

  82. Figueiredo ICR, Jaime PC, Monteiro CA (2008) Factors associated with the consumption of fruits and vegetables among adults in the city of São Paulo. Rev Public Health 42:777–785. https://doi.org/10.1590/S0034-89102008005000049

    Article  Google Scholar 

  83. Rambo MKD, Schmidt FL, Ferreira MMC (2015) Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities. Talanta 144:696–703. https://doi.org/10.1016/j.talanta.2015.06.045

    Article  Google Scholar 

  84. Girotto F, Alibardi L, Cossu R (2015) Food waste generation and industrial uses: a review. Waste Manage 45:32–41. https://doi.org/10.1016/j.wasman.2015.06.008

    Article  Google Scholar 

  85. Bediako JK, Sarkar AK, Lin S, Zhao Y, Song Y, Choi J, Cho C, Yun Y (2019) Characterization of the residual biochemical components of sequentially extracted banana peel biomasses and their environmental remediation applications. Waste Manage 89:141–153. https://doi.org/10.1016/j.wasman.2019.04.009

    Article  Google Scholar 

  86. Abdullah N, Sulaiman F, Miskam MA, Taib RM (2014) Characterization of banana (Musa spp.) pseudo-stem and fruit-bunch-stem as a potential renewable energy resource. World Acad Sci Eng Technol 8:815–819. https://doi.org/10.5281/zenodo.1094110

    Article  Google Scholar 

  87. Kabenge I, Omulo G, Banadda N, Seay J, Zziwa A, Kiggundu N (2018) Characterization of banana peels wastes as potential slow pyrolysis feedstock. J Sustain Dev 11:14–24. https://doi.org/10.5539/jsd.v11n2p14

    Article  Google Scholar 

  88. Castañeda Niño JP, Mina Hernandez JH, Valadez González A (2021) Potential uses of musaceae wastes: case of application in the development of bio-based composites. Polymers 13:1–34. https://doi.org/10.3390/polym13111844

    Article  Google Scholar 

  89. Ingale S, Joshi SJ, Gupte A (2014) Production of bioethanol using agricultural waste: banana pseudo stem. Braz J Microbiol 45:885–892. https://doi.org/10.1590/S1517-83822014000300018

    Article  Google Scholar 

  90. Li J, Liu H, Li Y et al (2021) Diverse banana pseudostems and rachis are distinctive for edible carbohydrates and lignocellulose saccharification towards high bioethanol production under chemical and liquid hot water pretreatments. Molecules 26:1–14. https://doi.org/10.3390/molecules26133870

    Article  Google Scholar 

  91. De Freitas C, Carmona EC, Brienzo M (2019) Xylooligosaccharides production process from lignocellulosic biomass and bioactive effects. Bioact Carbohydr Diet Fibre 18:1–11. https://doi.org/10.1016/j.bcdf.2019.100184

    Article  Google Scholar 

  92. De Freitas C, Terrone CC, Carmona EC, Brienzo M (2020) Evaluation of xylooligosaccharides effect on the growth of probiotic microorganisms. Braz J Dev 6:73400–73411. https://doi.org/10.34117/bjdv6n9-701

  93. De Freitas C, Terrone CC, Masarin F, Carmona EC, Brienzo M (2021) In vitro study of the effect of xylooligosaccharides obtained from banana pseudostem xylan by enzymatic hydrolysis on probiotic bacteria. Biocatal Agric Biotechnol 33:1–7. https://doi.org/10.1016/j.bcab.2021.101973

    Article  Google Scholar 

  94. Venzon SS, Canteri MHG, Granato D et al (2015) Physicochemical properties of modified citrus pectins extracted from orange pomace. J Food Sci Technol 52:4102–4112. https://doi.org/10.1007/s13197-014-1419-2

    Article  Google Scholar 

  95. Ahmed SA, Mostafa FA (2013) Utilization of orange bagasse and molokhia stalk for production of pectinase enzyme. Braz J Chem Eng 30:449–456. https://doi.org/10.1590/S0104-66322013000300003

    Article  Google Scholar 

  96. Tsukamoto J, Durán N, Tasic L (2013) Nanocellulose and bioethanol production from orange waste using isolated microorganisms. J Braz Chem Soc 24:1537–1543. https://doi.org/10.5935/0103-5053.20130195

    Article  Google Scholar 

  97. Awan AT, Tsukamoto J, Tasic L (2013) Orange waste as a biomass for 2G-ethanol production using low cost enzymes and co-culture fermentation. RSC Adv 3:25071–25078. https://doi.org/10.1039/C3RA43722A

    Article  Google Scholar 

  98. Santos CM, Dweck J, Viotto RS, Rosa AH, De Morais LC (2015) Applications of orange peel waste in the production of solid biofuels and biosorbents. Biores Technol 196:469–479. https://doi.org/10.1016/j.biortech.2015.07.114

    Article  Google Scholar 

  99. Mafra MR, Igarashi-Mafra L, Zuim DR, Vasques ÉC, Ferreira MA (2013) Adsorption of remazol brilliant blue on an orange peel adsorbent. Braz J Chem Eng 30:657–665. https://doi.org/10.1590/S0104-66322013000300022

    Article  Google Scholar 

  100. Juhaimi FAL, Matthaus B, Ozcan MM, Ghafoor K (2016) The physico-chemical properties of some citrus seeds and seed oils. Zeitschrift für Naturforschung C 71:79–85. https://doi.org/10.1515/znc-2016-0004

    Article  Google Scholar 

  101. Reazai M, Mohammadpourfard I, Nazmara S, Jahanbakhsh M, Shiri L (2014) Physicochemical characteristics of citrus seed oils from kerman. Iran J Lip 2014:1–3. https://doi.org/10.1155/2014/174954

    Article  Google Scholar 

  102. Kamal AM, El-Tantawy ME, Haggag EG et al (2019) Chemical and biological analysis of essential oils and pectins of banana, cantaloupe peels, guava pulp and formulation of banana pectin gel. J Pharmacogn Phytochem 8:1808–1816. E-ISSN: 2278–4136

  103. Spiller SH, Marques TR, Simão AA et al (2018) Modifications in the methods to extract pectin from cv. “Pedro Sato” guavas during ripening. Braz J Food Technol 21:1–7. https://doi.org/10.1590/1981-6723.03217

    Article  Google Scholar 

  104. Leite KMSC, Tadiotti AC, Baldochi D, Oliveira OMMF (2006) Partial purification, heat stability and kinetic characterization of the pectinmethylesterase from Brazilian guava, Paluma cultivars. Food Chem 94:565–572. https://doi.org/10.1016/j.foodchem.2004.12.008

    Article  Google Scholar 

  105. Carvalho AB, De Assis SA, Leite KMSC, Bach EE, Oliveira OMMF (2009) Pectin methylesterase activity and ascorbic acid content from guava fruit, cv. Predilecta, in different phases of development. Int J Food Sci Nutr 60:255–265. https://doi.org/10.1080/09637480701752244

    Article  Google Scholar 

  106. Liu X, Yan X, Bi J et al (2018) Determination of phenolic compounds and antioxidant activities from peel, flesh, seed of guava (Psidium guajava L.). Electrophoresis 39:1654–1662. https://doi.org/10.1002/elps.201700479

    Article  Google Scholar 

  107. Abdelmalek S, Mohsen E, Awwad A, Issa R (2016) Peels of Psidium guajava fruit possess antimicrobial properties. Inter Arab J Antimicrob Agents 6:1–9. https://doi.org/10.3823/791

    Article  Google Scholar 

  108. Fontanari GG, Souza GRG, Batistuti JP et al (2008) DSC studies on protein isolate of guava seeds Psidium guajava. J Therm Anal Calorim 93:397–402. https://doi.org/10.1007/s10973-007-8576-8

    Article  Google Scholar 

  109. Iha O, Martins GBC, Ehlert E, et al (2018) Extraction and characterization of passion fruit and guava oils from industrial residual seeds and their application as biofuels. J Braz Chem Soc 29:2089–2095. https://doi.org/10.21577/0103-5053.20180083

  110. Kobori CN, Jorge N (2005) Characterization of some seed oils of fruits for utilization of industrial residues. Sci Agrotech 29:1008–1014. https://doi.org/10.1590/S1413-70542005000500014

    Article  Google Scholar 

  111. Shrestha P, Sadiq MB, Anal AK (2021) Development of antibacterial biocomposites reinforced with cellulose nanocrystals derived from banana pseudostem. Carbohyd Polym Technol Appl 2:100–112. https://doi.org/10.1016/j.carpta.2021.100112

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, São Paulo Research Foundation (FAPESP, process 2017/22401-8 and 2020/14965-1), and Brazilian National Council for Scientific and Technological Development (CNPq process 303239/2021-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Brienzo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, B.S., de Freitas, C., Vieira, R.M. et al. Brazilian banana, guava, and orange fruit and waste production as a potential biorefinery feedstock. J Mater Cycles Waste Manag 24, 2126–2140 (2022). https://doi.org/10.1007/s10163-022-01495-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-022-01495-6

Keywords

Navigation