Skip to main content
Log in

Optimal conditions to produce extracts of compost and vermicompost from oil palm and coffee pulp wastes

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Compost and vermicompost extracts represent an alternative to synthetic fertilizers and pesticides because of their beneficial effects on plants. In this work, we composted as well as vermicomposted a mixture of press palm fiber, coffee pulp, and food waste. The mixture was then extracted and analyzed using 12 different extraction method combinations (aeration, substrate, and weight:volume ratio). Canonical discriminant analysis was carried out to evaluate the differences between the various treatments, microbiological parameters, and physicochemical factors, and allowed us to assess their influence on seed germination. Canonical discriminant analysis allowed us to find the optimal extraction method for enhanced seed germination, and also the factors that lead to an increase in macronutrients, namely composting, a compost:water ratio of 1:3, and the use of a non-aerated method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. FEMEXPALMA (2020) Anuario estadístico 2020. Federación Mexicana de Palma de Aceite. http://femexpalma.com.mx/femexpalma.ftp/anuario_estadistico_2020.pdf. Accessed 19 Jan 2021

  2. Sulaiman F, Abdullah N, Gerhauser H, Sharif A (2011) An outlook of Malaysian energy, oil palm industry and its utilization of wastes as useful resources. Biomass Bioenerg 35(9):3775–3786. https://doi.org/10.1016/j.biombioe.2011.06.018

    Article  Google Scholar 

  3. Prasertsan S, Prasertsan P (1996) Biomass residues from palm oil mills in Thailand: an overview on quantity and potential usage. Biomass Bioenerg 11:387–395

    Article  Google Scholar 

  4. Nasution MA, Wibawa DS, Ahamed T, Noguchi R (2018) Selection of palm oil mill effluent treatment for biogas generation or compost production using an analytic hierarchy process. J Mater Cycles Waste Manag 20:787–799. https://doi.org/10.1007/s10163-017-0638-9

    Article  Google Scholar 

  5. Azim K, Soudi B, Boukhari S, Perissol C, Roussos S, Thami Alami I (2018) Composting parameters and compost quality: a literature review. Org Agric 8:141–158. https://doi.org/10.1007/s13165-017-0180-z

    Article  Google Scholar 

  6. Senapati BK (1999) In-soil earthworm technologies for tropical agroecosystems. In: Lavelle P, Brussaard L, Hendrix P (eds) Earthworm management in tropical agroecosystems. CABI, New York, pp 199–237

    Google Scholar 

  7. Murthy PS, Naidu MM (2012) Sustainable management of coffee industry by-products and value addition—a review. Resour Conserv Recycl 66:45–58. https://doi.org/10.1016/j.resconrec.2012.06.005

    Article  Google Scholar 

  8. Palaniveloo K, Amran MA, Norhashim NA, Mohamad-Fauzi N, Peng-Hui F, Hui-Wen L, Kai-Lin Y, Jiale L, Chian-Yee MG, Jing-Yi L, Gunasekaran B, Razak SA (2020) Food waste composting and microbial community structure profiling. Processes 8(6):723. https://doi.org/10.3390/pr8060723

    Article  Google Scholar 

  9. Eudoxie G, Martin M (2019) Compost tea quality and fertility. In: Larramendy M, Soloneski S (eds) Organic fertilizers - history, production and applications. IntechOpen, London, pp 79–104. https://doi.org/10.5772/intechopen.86877

    Chapter  Google Scholar 

  10. Islam MK, Yaseen T, Traversa A, Ben Kheder M, Brunetti G, Cocozza C (2016) Effects of the main extraction parameters on chemical and microbial characteristics of compost tea. Waste Manag 52:62–68. https://doi.org/10.1016/j.wasman.2016.03.042

    Article  Google Scholar 

  11. Heděnec P, Cajthaml T, Pižl V, Márialigeti K, Tóth E, Borsodi AK, Chroňáková A, Krištůfek V, Frouz J (2020) Long-term effects of earthworms (Lumbricus rubellus Hoffmeister, 1843) on activity and composition of soil microbial community under laboratory conditions. Appl Soil Ecol 150:103463. https://doi.org/10.1016/j.apsoil.2019.103463

    Article  Google Scholar 

  12. Diedhiou-Sall S, Assigbetsee KB, Badiane AN, Diedhiou I, Khouma M, Dick RP (2021) Spatial and temporal distribution of soil microbial properties in two shrub intercrop systems of the Sahel. Front Sustain Food Syst 5:51. https://doi.org/10.3389/fsufs.2021.621689

    Article  Google Scholar 

  13. AlKubaisi M, Aziz WA, George S, Al-Tarawneh K (2019) Multivariate discriminant analysis managing staff appraisal case study. Acad Strateg Manag J 18(5):1–12

    Google Scholar 

  14. Ayogu Ch (2014) Application of discriminant function analysis in agricultural extension research. In: Madukwe MC, Igbokwe EM, Garforth CJ, Dube MA (eds) A guide to research in agricultural extension, 2nd edn. Agricultural Extension Society of Nigeria, pp 117–146

  15. International Organization for Standardization, ISO (1991) Microbiology - general guidance for the enumeration of coliforms - most probable number technique 4831 2a. International Organization for Standardization, Switzerland

  16. Shrestha K, Shrestha P, Walsh KB, Harrower M, Midmore DJ (2011) Microbial enhancement of compost extracts based on cattle rumen content compost – characterization of a system. Bioresour Technol 102:8027–8034. https://doi.org/10.1016/j.biortech.2011.06.076

    Article  Google Scholar 

  17. Diario Oficial de la Federación, DOF (2002) Norma Oficial Mexicana NOM-021-SEMARNAT-2000 que establece las especificaciones de fertilidad, salinidad y clasificación de suelos, estudio, muestreo y análisis. Secretaría de Medio ambiente y Recursos Naturales, México

  18. Secretaría de Gobernación, SEGOB (2008) Humus de lombriz (lombricomposta) - Especificaciones y métodos de prueba NMX-FF-109-SCFI-2008. Dirección General de Normas, México

  19. HACH Company (2013) Procedures manual, methods 10071 and 10127. USA

  20. Xi F, Fu LY, Wang GZ, Zheng TL (2006) Simple method for removing humic acids from marine sediment samples prior to DNA extraction. High Technol Lett 16:539–544

    Google Scholar 

  21. Cheng F, Hou L, Woeste K, Shang Z, Peng X, Zhao P, Zhang S (2016) Soil pretreatment and fast cell lysis for direct polymerase chain reaction form forest soils for terminal restriction fragment length polymorphism analysis of fungal communities. Braz J Microbiol 47:817–827. https://doi.org/10.1016/j.bjm.2016.06.007

    Article  Google Scholar 

  22. Nübel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W, Backhaus H (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643. https://doi.org/10.1128/jb.178.19.5636-5643.1996

    Article  Google Scholar 

  23. Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    Article  Google Scholar 

  24. Kotowsky W (1926) Temperature relations to germination of vegetables seed. Proc Am Soc Hortic Sci 23:176–184

    Google Scholar 

  25. Gel Analyzer 2010a (2010) Software by Istvan Lazar. http://www.gelanalyzer.com. Accessed Dec 2018

  26. Shannon EE, Weaver W (1963) The mathematical theory of communication. The University of Illinois Press, Chicago

    MATH  Google Scholar 

  27. Real R, Vargas JM (1996) The probabilistic basis of Jaccard’s index of similarity. Syst Biol 45:380–385. https://doi.org/10.1093/sysbio/45.3.380

    Article  Google Scholar 

  28. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Austria. https://www.R-project.org/. Accessed Nov 2018

  29. Borth PLB, Perin JKH, Torrecilhas AR, Pan NC, Kuroda EK, Fernandes F (2021) Biochemical methane potential of food and garden waste co-digestion with variation in solid content and inoculum:substrate ratio. J Mater Cycles Waste Manag 23:1974–1983. https://doi.org/10.1007/s10163-021-01270-z

    Article  Google Scholar 

  30. Kai D, Chow LP, Loh XJ (2018) Lignin and its properties. In: Loh XJ, Kai D, Li Z (eds) Functional materials from lignin: methods and advances, 3rd edn. World Scientific Publishing Europe Ltd, Singapore, pp 1–28. https://doi.org/10.1142/9781786345219_0001

    Chapter  Google Scholar 

  31. Mohd Din ARJ, Cheng KK, Sarmidi MR (2017) Assessment of compost extract on yield and phytochemical contents of Pak Choi (Brassica rapa cv. chinensis) grown under different fertilizer strategies. Commun Soil Sci Plant Anal 48(3):274–284. https://doi.org/10.1080/00103624.2016.1269793

    Article  Google Scholar 

  32. Jeffrey LSH, Sahilah AM, Son R, Tosiah S (2007) Isolation and screening of actinomycetes from Malaysian soil for their enzymatic and antimicrobial activities. J Trop Agric Food Sci 35:159–164

    Google Scholar 

  33. Bhatti AA, Haq S, Bhat RA (2017) Actinomycetes benefaction role in soil and plant health. Microb Pathog 111:458–467. https://doi.org/10.1016/j.micpath.2017.09.036

    Article  Google Scholar 

  34. Schonholzer F, Dittmar H, Zeyer J (1999) Origins and fate of fungi and bacteria in the gut of Lumbricus terrestris L. studied by image analysis. FEMS Microbiol Ecol 28:235–248. https://doi.org/10.1111/j.1574-6941.1999.tb00579.x

    Article  Google Scholar 

  35. Ingham RE (2005) The compost tea brewing manual, 5th edn. Soil Foodweb Inc, Oregon

    Google Scholar 

  36. Xu D, Liu D, Tang Z, Yu G-H, Yuan J, Shen Q, Huang Q (2012) Structure of chemical components in different compost extracts characterized by chromatogram and spectroscopy analysis and its influence on plant growth promotion. J Mater Cycles Waste Manag. https://doi.org/10.1007/s10163-012-0071-z

    Article  Google Scholar 

  37. Xu D, Zhao S, Xiong Y, Peng C, Xu X, Si G et al (2015) Biological, physicochemical, and spectral properties of aerated compost extracts: influence of aeration quantity. Commun Soil Sci Plant Anal 46(18):2295–2310. https://doi.org/10.1080/00103624.2015.1081693

    Article  Google Scholar 

  38. Gorliczay E, Pecsmán D, Tamás J (2018) Testing laboratory parameters of compost tea. Acta Agrar Debreceniensis 75:31–36. https://doi.org/10.34101/actaagrar/75/1642

    Article  Google Scholar 

  39. Diánez F, Marín F, Santos M, Gea JF, Navarro MJ, Piñeiro M, González JM (2018) Genetic analysis and in vitro enzymatic determination of bacterial community in compost teas from different sources. Compost Sci Util 26:256–270. https://doi.org/10.1080/1065657X.2018.1496045

    Article  Google Scholar 

  40. Monroy F, Aira M, Domínguez J (2008) Changes in density of nematodes, protozoa and total coliforms after transit through the gut of four epigeic earthworms (Oligochaeta). Appl Soil Ecol 39:127–132. https://doi.org/10.1016/j.apsoil.2007.11.011

    Article  Google Scholar 

  41. Ito T, Sekizuka T, Kishi N, Yamashita A, Kuroda M (2019) Conventional culture methods with commercially available media unveil the presence of novel culturable bacteria. Gut Microbes 10(1):77–91. https://doi.org/10.1080/19490976.2018.1491265

    Article  Google Scholar 

  42. Ciampitti IA, Micucci FG, Fontanetto H, García FO (2006) Manejo y ubicación del fertilizante junto a la semilla: efectos fitotóxicos. Inform Agron 10:1–8

    Google Scholar 

  43. Hegazy MI, Hussein EI, Ali AS (2015) Improving physico-chemical and microbiological quality of compost tea using different treatments during extraction. Afr J Microbiol Res 9:763–770. https://doi.org/10.5897/AJMR2014.7324

    Article  Google Scholar 

  44. Ramayah T, Ahmad N, Abdul-Halim H, Zainal SRM, Lo M (2010) Discriminant analysis: an illustrated example. Afr J Bus Manag 4:1654–1667

    Google Scholar 

  45. Pane C, Palese AM, Spaccini R, Piccolo A, Celano G, Zaccardelli M (2016) Enhancing sustainability of a processing tomato cultivation system by using bioactive compost teas. Sci Hortic 202:117–124. https://doi.org/10.1016/j.scienta.2016.02.034

    Article  Google Scholar 

  46. Fritz J, Franke-Whittle I, Haindl S, Braun R (2012) Microbiological community analysis of vermicompost tea and its influence on the growth of vegetables and cereals. Can J Microbiol 58:836–847. https://doi.org/10.1139/w2012-061

    Article  Google Scholar 

  47. Arancon N, Van Cleave J, Hamasaki R, Nagata R, Felts J (2020) The influence of vermicompost water extracts on growth of plants propagated by cuttings. J Plant Nutr 43(2):176–185. https://doi.org/10.1080/01904167.2019.1659355

    Article  Google Scholar 

  48. González-Hernández AI, Suárez-Fernández MB, Pérez-Sánchez R, Gómez-Sánchez MA, Morales- Corts MR (2021) Compost tea induces growth and resistance against Rhizoctonia solani and Phytophthora capsici in pepper. Agronomy 11:781. https://doi.org/10.3390/agronomy11040781

    Article  Google Scholar 

  49. Arancon NQ, Pant A, Radovich T, Hue NV, Potter JK, Converse CE (2012) Seed germination and seedling growth of tomato and lettuce as affected by vermicompost water extracts (Teas). HortScience 47:1722–1728. https://doi.org/10.21273/HORTSCI.47.12.1722

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Javier Valle-Mora for the statistical analysis support. We are especially grateful to María de los Ángeles Palomeque-Rodas and Luis Enrique Luna-Hernández for their assistance with the experimental work. SBFS would like to acknowledge support from a scholarship (815209) awarded by Consejo Nacional de Ciencia y Tecnología (CONACyT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Guillén-Navarro.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores-Solórzano, S.B., Huerta-Lwanga, E., Cuevas-González, R. et al. Optimal conditions to produce extracts of compost and vermicompost from oil palm and coffee pulp wastes. J Mater Cycles Waste Manag 24, 801–810 (2022). https://doi.org/10.1007/s10163-022-01365-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-022-01365-1

Keywords

Navigation