Skip to main content
Log in

The effect of various composite and operating parameters in wear properties of epoxy-based natural fiber composites

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

In this experiment banana fly ash (BA) at 1, 3 and 4 wt% was mixed with the hybrid natural fiber combination of sisal/pineapple at 30, 40 and 50 wt%. Grey relational analysis (GRA) coupled with Taguchi method is followed to find the common optimal parameter combination that yields lesser specific wear rate (SWR) and coefficient of friction while testing the developed novel polymer matrix composites against steel ball. The multi-response optimization using GRA pointed out that minimal addition of BA filler (1 wt%), hybrid fibre content (30 wt%), higher sliding distance (1500 m) and lesser loading (5 N) results in good overall tribological properties. The addition of filler materials and hybrid fibres with the polymer matrix results in increased friction. The SEM results showed high adding up of fiber results in pull out of fibers in the epoxy resin resulting in high wear rate of natural composites. Good fiber/filler/epoxy bonding created a tribolayer surface in the combination and that reduces the surface contact between counter specimen and work piece with reduced SWR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sukudom N, Jariyasakoolroj P, Jarupan L, Tansin K (2019) Mechanical, thermal, and biodegradation behaviors of poly(vinyl alcohol) biocomposite with reinforcement of oil palm frond fiber. J Mater Cycles Waste Manag 21:125–133. https://doi.org/10.1007/s10163-018-0773-y

    Article  Google Scholar 

  2. Bhogayata AC, Arora NK (2019) Utilization of metalized plastic waste of food packaging articles in geopolymer concrete. J Mater Cycles Waste Manag 21:1014–1026. https://doi.org/10.1007/s10163-019-00859-9

    Article  Google Scholar 

  3. Balaji A, Karthikeyan B, Swaminathan J, Sundar RC (2017) Mechanical behavior of short bagasse fiber reinforced cardanol-formaldehyde composites. Fibers Polym 18:1193–1199. https://doi.org/10.1007/s12221-017-7009-y

    Article  Google Scholar 

  4. Keskisaari A, Karki T (2017) Raw material potential of recyclable materials for fiber composites: a review study. J Mater Cycles Waste Manag 19:1136–1143. https://doi.org/10.1007/s10163-016-0511-2

    Article  Google Scholar 

  5. De Paiva FFG, de Maria VPK, Torres GB et al (2019) Sugarcane bagasse fiber as semi-reinforcement filler in natural rubber composite sandals. J Mater Cycles Waste Manag 21:326–335. https://doi.org/10.1007/s10163-018-0801-y

    Article  Google Scholar 

  6. Grause G, Mochizuki T, Kameda T, Yoshioka T (2013) Recovery of glass fibers from glass fiber reinforced plastics by pyrolysis. J Mater Cycles Waste Manag 15:122–128. https://doi.org/10.1007/s10163-012-0101-x

    Article  Google Scholar 

  7. Chen W, Zhang S, He F et al (2019) Porosity and surface chemistry development and thermal degradation of textile waste jute during recycling as activated carbon. J Mater Cycles Waste Manag 21:315–325. https://doi.org/10.1007/s10163-018-0792-8

    Article  Google Scholar 

  8. Mittal V, Saini R, Sinha S (2016) Natural fiber-mediated epoxy composites—a review. Compos B 99:425–435. https://doi.org/10.1016/j.compositesb.2016.06.051

    Article  Google Scholar 

  9. Nguyen H, Jamali Moghadam M, Moayedi H (2019) Agricultural wastes preparation, management, and applications in civil engineering: a review. J Mater Cycles Waste Manag 21:1039–1051. https://doi.org/10.1007/s10163-019-00872-y

    Article  Google Scholar 

  10. Oushabi A (2019) The pull-out behavior of chemically treated lignocellulosic fibers/polymeric matrix interface (LF/PM ): a review. Compos B. https://doi.org/10.1016/j.compositesb.2019.107059

    Article  Google Scholar 

  11. Jaafar J, Parlaungan J, Mohd S et al (2018) Influence of selected treatment on tensile properties of short pineapple leaf fiber reinforced tapioca resin biopolymer composites. J Polym Environ 26:4271–4281. https://doi.org/10.1007/s10924-018-1296-2

    Article  Google Scholar 

  12. Todkar SS, Patil SA (2019) Review on mechanical properties evaluation of pineapple leaf fibre (PALF) reinforced polymer composites. Compos B. https://doi.org/10.1016/j.compositesb.2019.106927

    Article  Google Scholar 

  13. Aslan M, Tufan M, Küçükömeroğlu T (2018) Tribological and mechanical performance of sisal-filled waste carbon and glass fibre hybrid composites. Compos B 140:241–249. https://doi.org/10.1016/j.compositesb.2017.12.039

    Article  Google Scholar 

  14. Maurya HO, Jha K, Tyagi YK (2017) Tribological behavior of short sisal fiber reinforced epoxy composite. Polym Polym Compos 25:215–220. https://doi.org/10.1177/096739111702500306

    Article  Google Scholar 

  15. Nirmal U, Hashim J, Low KO (2012) Adhesive wear and frictional performance of bamboo fibres reinforced epoxy composite. Tribol Int 47:122–133. https://doi.org/10.1016/j.triboint.2011.10.012

    Article  Google Scholar 

  16. Shuhimi FF, Bin AMF, Kalam MA et al (2016) Tribological characteristics comparison for oil palm fibre/epoxy and kenaf fibre/epoxy composites under dry sliding conditions. Tribol Int 101:247–254. https://doi.org/10.1016/j.triboint.2016.04.020

    Article  Google Scholar 

  17. Singha AS, Thakur VK (2008) Mechanical properties of natural fibre reinforced polymer composites. Bull Mater Sci 31:791–799. https://doi.org/10.1007/s12034-008-0126-x

    Article  Google Scholar 

  18. Joseph J, Munda PR, Kumar M et al (2020) Sustainable conducting polymer composites: study of mechanical and tribological properties of natural fiber reinforced PVA composites with carbon nanofillers. Polym Plast Technol Mater. https://doi.org/10.1080/25740881.2020.1719144

    Article  Google Scholar 

  19. Nanda BP, Satapathy A (2020) An analysis of the sliding wear characteristics of epoxy-based hybrid composites using response surface method and neural computation. J Nat Fibers. https://doi.org/10.1080/15440478.2020.1722781

    Article  Google Scholar 

  20. Fei J, Zhang C, Luo D et al (2018) Vertically aligned TiO2 nanorods-woven carbon fiber for reinforcement of both mechanical and anti-wear properties in resin composite. Appl Surf Sci 435:156–162. https://doi.org/10.1016/j.apsusc.2017.10.182

    Article  Google Scholar 

  21. Kumar MNS, Yaakob Z, Mohan N, Babu SPK (2010) Mechanical and abrasive wear studies on biobased jatropha oil cake incorporated glass–epoxy composites. J Am Oil Chem Soc 87:929–936. https://doi.org/10.1007/s11746-010-1575-0

    Article  Google Scholar 

  22. Sumesh KR, Kanthavel K (2019) Synergy of fiber content, Al2O3 nanopowder, NaOH treatment and compression pressure on free vibration and damping behavior of natural hybrid-based epoxy composites. Polym Bull. https://doi.org/10.1007/s00289-019-02823-x

    Article  Google Scholar 

  23. Sumesh KR, Kanthavel K (2020) Effect of ­ TiO2 nano - filler in mechanical and free vibration damping behavior of hybrid natural fiber composites. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-020-02308-3

    Article  Google Scholar 

  24. Sumesh KR, Kavimani V, Rajeshkumar G, Ravikumar P (2020) An investigation into the mechanical and wear characteristics of hybrid composites: influence of different types and content of biodegradable reinforcements. J Nat Fibers. https://doi.org/10.1080/15440478.2020.1821297

    Article  Google Scholar 

  25. Mahesh V, Joladarashi S, Kulkarni SM (2019) Physio-mechanical and wear properties of novel jute reinforced natural rubber based flexible composite. Mater Res Express. https://doi.org/10.1088/2053-1591/ab0164

    Article  Google Scholar 

  26. Chegdani F, El Mansori M, Bukkapatnam STS, El Amri I (2019) Thermal effect on the tribo-mechanical behavior of natural fiber composites at micro-scale. Tribol Int. https://doi.org/10.1016/j.triboint.2019.06.024

    Article  Google Scholar 

  27. Correa CE, Betancourt S, Vázquez A, Gañan P (2017) Wear performance of vinyl ester reinforced with Musaceae fiber bundles sliding against different metallic surfaces. Tribol Int 109:447–459. https://doi.org/10.1016/j.triboint.2017.01.009

    Article  Google Scholar 

  28. Kumar S, Patel VK, Mer KKS et al (2019) Himalayan natural fiber-reinforced epoxy composites: effect of Grewia optiva/Bauhinia vahlii fibers on physico-mechanical and dry sliding wear behavior. J Nat Fibers. https://doi.org/10.1080/15440478.2019.1612814

    Article  Google Scholar 

  29. Yousif BF, Lau STW, McWilliam S (2010) Polyester composite based on betelnut fibre for tribological applications. Tribol Int 43:503–511. https://doi.org/10.1016/j.triboint.2009.08.006

    Article  Google Scholar 

  30. Akpan EI, Wetzel B, Friedrich K (2018) A fully biobased tribology material based on acrylic resin and short wood fibres. Tribol Int 120:381–390. https://doi.org/10.1016/j.triboint.2018.01.010

    Article  Google Scholar 

  31. Vivek S, Kanthavel K (2019) Effect of bagasse ash filled epoxy composites reinforced with hybrid plant fibres for mechanical and thermal properties. Compos B Eng 160:170–176. https://doi.org/10.1016/j.compositesb.2018.10.038

    Article  Google Scholar 

  32. Sumesh KR, Kanthavel K (2020) Abrasive water jet machining of sisal/pineapple epoxy hybrid composites with the addition of various fly ash filler. Mater Res Express. https://doi.org/10.1088/2053-1591/ab7865

    Article  Google Scholar 

  33. Sumesh KR, Saikrishnan G, Pandiyan P, Prabhu L, Gokulkumar S, Priya AK et al (2021) The influence of different parameters in tribological characteristics of pineapple/sisal/TiO2 filler incorporation. J Ind Text. https://doi.org/10.1177/15280837211022614

    Article  Google Scholar 

  34. Rajeshkumar G (2020) An experimental study on the interdependence of mercerization, moisture absorption and mechanical properties of sustainable Phoenix sp. fibre-reinforced epoxy composites. J Ind Text 49:1233–1251. https://doi.org/10.1177/1528083718811085

    Article  Google Scholar 

  35. Rodríguez-díaz JM, Omar J, García P, Ramón L, Sánchez B, Gurgel M et al (2015) Comprehensive characterization of sugarcane bagasse ash for its use as an adsorbent. Bioenergy Res 8:1885–1895. https://doi.org/10.1007/s12155-015-9646-6

    Article  Google Scholar 

  36. Castaldelli VN, Akasaki JL, Melges JLP et al (2013) Use of slag/sugar cane bagasse ash (SCBA) blends in the production of alkali-activated materials. Materials 6:3108–3127. https://doi.org/10.3390/ma6083108

    Article  Google Scholar 

  37. Pereira AM, Moraes JCB, Moraes MJB et al (2018) Valorisation of sugarcane bagasse ash (SCBA) with high quartz content as pozzolanic material in Portland cement mixtures. Mater Constr 68:1–10. https://doi.org/10.3989/mc.2018.00617

    Article  Google Scholar 

  38. Sumesh KR, Kavimani V, Rajeshkumar G, Indran S, Saikrishnan G (2021) Effect of banana, pineapple and coir fly ash filled with hybrid fiber epoxy based composites for mechanical and morphological study. J Mater Cycles Waste Manag 23:1277–1288. https://doi.org/10.1007/s10163-021-01196-6

    Article  Google Scholar 

  39. Balaji A, Purushothaman R, Udhayasankar R, Vijayaraj S, Karthikeyan B (2020) Study on mechanical, thermal and morphological properties of banana fiber-reinforced epoxy composites. J Bio Tribo Corros. https://doi.org/10.1007/s40735-020-00357-8

    Article  Google Scholar 

  40. Udhayasankar R, Karthikeyan B, Balaji A (2020) Comparative mechanical, thermal properties and morphological study of untreated and NaOH-treated coconut shell-reinforced cardanol environmental friendly green composites. J Adhes Sci Technol 34:1720–1740. https://doi.org/10.1080/01694243.2020.1727643

    Article  Google Scholar 

  41. Rajeshkumar G (2020) A new study on tribological performance of Phoenix sp. fiber-reinforced epoxy composites. J Nat Fibers. https://doi.org/10.1080/15440478.2020.1724235

    Article  Google Scholar 

  42. Nirmal U, Hashim J, Megat Ahmad MMH (2015) A review on tribological performance of natural fibre polymeric composites. Tribol Int 83:77–104. https://doi.org/10.1016/j.triboint.2014.11.003

    Article  Google Scholar 

  43. Liu Y, Xie J, Wu N et al (2019) Influence of silane treatment on the mechanical, tribological and morphological properties of corn stalk fiber reinforced polymer composites. Tribol Int 131:398–405. https://doi.org/10.1016/j.triboint.2018.11.004

    Article  Google Scholar 

  44. Chang BP, Chan WH, Zamri MH et al (2019) Investigating the effects of operational factors on wear properties of heat-treated pultruded kenaf fiber-reinforced polyester composites using Taguchi method. J Nat Fibers 16:702–717. https://doi.org/10.1080/15440478.2018.1432001

    Article  Google Scholar 

Download references

Funding

The research work was funded by European Social Fund Project,” International Mobility of Researchers in CTU” (CZ.02.2.69/0.0/0.0/16_027/0008465).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumesh Keerthiveettil Ramakrishnan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keerthiveettil Ramakrishnan, S., Vijayananth, K., Pudhupalayam Muthukutti, G. et al. The effect of various composite and operating parameters in wear properties of epoxy-based natural fiber composites. J Mater Cycles Waste Manag 24, 667–679 (2022). https://doi.org/10.1007/s10163-022-01357-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-022-01357-1

Keywords

Navigation