Skip to main content
Log in

A multi-method approach to reevaluate the suitability of an old active dumpsite: an application in the Abhar Plain, Iran

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

This study presents a comprehensive framework for reevaluating the suitability of an old active dumpsite and identifying potential sites in the Abhar region, Iran, through geophysical tomography survey, hydrogeological investigation, and the GIS-based AHP method. The results of 2D geoelectrical tomography demonstrated that the leachate plume, with a concentration depth of ~ 20 m, has not affected the aquifer, which is at the minimum depth of 70 m. Our interpretation of the permeability measurement through Philip’s equation reveals that the dumpsite topsoil has a low to middle permeability, ranging from 3 to 5 mm/h. After field investigations, three main criteria and twelve sub-criteria were selected and weighted by the AHP method. Accordingly, a ranked suitability map was prepared using a weighted linear combination method in GIS. The suitability map confirms the dumpsite is situated in a moderately suitable class. The most suitable, suitable, moderately suitable, poorly suitable, and least suitable zones cover 4.87%, 20.14%, 34.25%, 37.21%, and 3.72% of the Abhar plain, respectively. We have also defined vacant lands in the eastern and southern parts of the dumpsite for future operations. The method applied in this paper can be used for the suitability evaluation of other underground storage facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Geological Survey of Iran.

  2. 2D Resistivity IP Inversion Software.

  3. The United States Environmental Protection Agency.

  4. The Iranian Department of Environment.

  5. The United States Department of Agriculture.

References

  1. Yesilnacar MI, Süzen ML, Kaya BŞ, Doyuran V (2012) Municipal solid waste dumpsite selection for the city of Şanliurfa-Turkey: an example using MCDA integrated with GIS. Int J Dig Earth 5(2):147–164

    Article  Google Scholar 

  2. Masoumi Z, Maleki J, Mesgari MS, Mansourian A (2017) Using an evolutionary algorithm in multiobjective geographic analysis for land-use allocation and decision support. Geogr Anal 49(1):58–83

    Article  Google Scholar 

  3. Medineckiene M (2017) Integrated decision-making in civil engineering, based on multi-criteria assessment and buildings’ certification. Doctoral dissertation, KTH Royal Institute of Technology Stockholm, Sweden.

  4. Demesouka OE, Anagnostopoulos KP, Siskos E (2019) Spatial multi-criteria decision support for robust land-use suitability: the case of dumpsite selection in Northeastern Greece. Eur J Oper Res 272(2):574–586

    Article  Google Scholar 

  5. Randazzo L, Cusumano A, Oliveri G, Di Stefano P, Renda P, Perricone M, Zarcone G (2018) Landfill site selection for municipal solid waste by using AHP method in GIS environment: waste management decision-support in Sicily (Italy). Detritus 2:77–88. https://doi.org/10.31025/2611-4135/2018.13656

    Article  Google Scholar 

  6. Chabuk A, Al-Ansari N, Hussain HM, Knutsson S, Pusch R, Laue J (2017) Combining GIS applications and method of multi-criteria decision-making (AHP) for landfill siting in Al-Hashimiyah Qadhaa, Babylon, Iraq. Sustainability 9:1932

    Article  Google Scholar 

  7. Sureshkumar MR, Sivakumar M, Nagarajan M (2017) Selection of alternative landfill site in Kanchipuram, India by using GIS and multi-criteria decision analysis. Appl Ecol Environ Res 15(1):627–636

    Article  Google Scholar 

  8. Rahmat ZG, Niri MV, Alavi N, Goudarzi G, Babaei AA, Baboli Z, Hosseinzadeh M (2017) Landfill site selection using GIS and AHP: a case study: Behbahan, Iran. KSCE J Civ Eng 21(1):111–118

    Article  Google Scholar 

  9. Aksoy E (2018) San BT 2017 Geographical information systems (GIS) and Multi-Criteria Decision Analysis (MCDA) integration for sustainable landfill site selection considering dynamic data source. Bull Eng Geol Environ 2:1–13. https://doi.org/10.1007/s10064-017-1135-z

    Article  Google Scholar 

  10. Torabi-Kaveh M, Babazadeh R, Mohammadi SD, Zaresefat M (2016) Landfill site selection using a combination of GIS and fuzzy AHP, a case study: Iranshahr, Iran. Waste Manag Res 34(5):438–448

    Article  Google Scholar 

  11. Ghosh S, Sachikanta N (2016) Site suitability analysis for solid waste management using multi-criteria analysis. In: Integrated waste management in India. Springer, Cham, pp 19–32. https://doi.org/10.1007/978-3-319-27228-3_3.

  12. Beskese A, Demir HH, Ozcan HK, Okten HE (2015) Landfill site selection using fuzzy AHP and fuzzy TOPSIS: a case study for Istanbul. Environ Earth Sci 73(7):3513–3521

    Article  Google Scholar 

  13. Uyan M (2014) MSW landfill site selection by combining AHP with GIS for Konya, Turkey. Environ Earth Sci 71(4):1629–1639

    Article  Google Scholar 

  14. Saaty TL (1997) That is not the analytic hierarchy process: what the AHP is and what it is not. J Multi Crit Decis Anal 6(6):324–335

    Article  Google Scholar 

  15. Karakuş CB (2018) Evaluation of groundwater quality in Sivas province (Turkey) using water quality index and GIS-based analytic hierarchy process. Int J Environ Health Res. https://doi.org/10.1080/09603123.2018.1551521

    Article  Google Scholar 

  16. Shahabi H, Keihanfard S, Ahmad BB, Amiri MJT (2014) Evaluating Boolean, AHP and WLC methods for the selection of waste landfill sites using GIS and satellite images. Environ Earth Sci 71(9):4221–4233

    Article  Google Scholar 

  17. Chian ES, Dewalle FB (1976) Sanitary landfill leachates and their leachate treatment. J Environ Eng Div 102(2):411–431

    Google Scholar 

  18. Negi P, Mor S, Ravindra K (2018) Impact of landfill leachate on the groundwater quality in three cities of North India and health risk assessment. Environm Dev Sustain 5:1–20

    Google Scholar 

  19. Ishchenko V (2018) Prediction of heavy metals concentration in the leachate: a case study of Ukrainian waste. J Mater Cycles Waste Manag 20:1892–1900

    Article  Google Scholar 

  20. Maiti SK, De S, Hazra T, Debsarkar A, Dutta A (2016) Characterization of leachate and its impact on surface and groundwater quality of a closed dumpsite—a case study at Dhapa, Kolkata, India. Proced Environ Sci 35:391–399

    Article  Google Scholar 

  21. Jhamnani B, Singh SK (2009) Groundwater contamination due to Bhalaswa dumpsite in New Delhi. Int J Environ Sci Technol 1(3):121–125

    Google Scholar 

  22. Ehirim CN, Ebeniro JO, Olanegan OP (2009) A geophysical investigation of solid waste landfill using 2-D resistivity imaging and vertical electrical sounding methods in Port Harcourt municipality, Rivers State, Nigeria. Pac J Sci Technol 10(2):604–613

    Google Scholar 

  23. Reyes-López JA, Ramírez-Hernández J, Lázaro-Mancilla O, Carreón-Diazconti C, Garrido MML (2008) Assessment of groundwater contamination by landfill leachate: a case in México. Waste Manag 28:S33–S39

    Article  Google Scholar 

  24. Wang K, Li L, Tan F, Wu D (2018) Treatment of landfill leachate using activated sludge technology: a review. Archaea 2018:1–10. https://doi.org/10.1155/2018/1039453

    Article  Google Scholar 

  25. Del Borghi A, Binaghi L, Converti A, Del Borghi M (2003) Combined treatment of leachate from sanitary landfill and municipal wastewater by activated sludge. Chem Biochem Eng Q 17(4):277–284

    Google Scholar 

  26. Hassanvand MS, Nabizadeh R, Heidari M (2008) Municipal solid waste analysis in Iran. Iran J Health Environ 1(1):9–18

    Google Scholar 

  27. Yousefi H, Javadzadeh Z, Noorollahi Y, Yousefi-Sahzabi A (2018) Landfill site selection using a multi-criteria decision-making method: a case study of the Salafcheghan special economic zone, Iran. Sustainability 10(4):1107

    Article  Google Scholar 

  28. Hashemi M, Pourzamani HR, Chavoshani A, Mengelizadeh N, Parseh I, Heidari Farsani M, Rezaei S (2017) Industrial landfill site selection using Analytical Hierarchy Process (Case study: Razi industrial town of Isfahan-Iran). J Adv Environ Health Res 5(1):51–58

    Google Scholar 

  29. Eskandari M, Homaee M, Falamaki A (2016) Landfill site selection for municipal solid wastes in mountainous areas with landslide susceptibility. Environ Sci Pollut Res 23(12):12423–12434

    Article  Google Scholar 

  30. Akintorinwa OJ, Okoro OV (2019) Combine electrical resistivity method and multi-criteria GIS-based modeling for landfill site selection in the Southwestern Nigeria. Environ Earth Sci 78(5):162

    Article  Google Scholar 

  31. Saatsaz M, Monsef I, Rahmani M, Ghods A (2018) Site suitability evaluation of an old operating landfill using AHP and GIS techniques and integrated hydrogeological and geophysical surveys. Environ Monit Assess 190(3):144

    Article  Google Scholar 

  32. IMO (2017) Annual climatological reports of the Zanjan Province. IMO, Zanjan Administration, Iran

    Google Scholar 

  33. Moghimi H, Moghimi S, Fine OB (2014) Assess the impact of drought on quantity of the resources groundwater Abhar plain. Adv Environ Biol 8(12):1489–1496

    Google Scholar 

  34. Nouri R, Jafari M, Arian M, Feizi F, Afzal P (2013) Prospection for copper mineralization with contribution of remote sensing, geochemical and mineralographical data in Abhar 1:100,000 sheet, NW Iran. Arch Min Sci 58(4):1071–1084

    Google Scholar 

  35. Darvishzadeh SA (2002) Geology of Iran. Amirkabir Publication, Tehran, p 600

    Google Scholar 

  36. Aghanabati A (2004) Geology of Iran. Geological Survey of Iran, Tehran

    Google Scholar 

  37. GSI (1983) Zanjan-Abhar Geological map 1:250000. GSI series Sheet No. NJ39-13

  38. Mahdloo Torkamani S (2011) Mathematical modeling of the Abhar aquifer using the finite element method. Kharazmi University, Faculty of Sciences, Iran

    Google Scholar 

  39. SCI (Iran Statistical Center) (2016) Report of the 2016 census of housing and population of Iran. Iran Statistical Center, Tehran

    Google Scholar 

  40. Municipality of Abhar (2016) Municipal solid waste analysis in Abhar. Administrative Office Internal report, Abhar (in Persian)

    Google Scholar 

  41. Halim AA, Sidi SFA, Hanafiah MM (2017) Ammonia removal using organic acid modified activated carbon from landfill leachate. Environ Ecosyst Sci 1(1):28–30

    Article  Google Scholar 

  42. Bernstone C, Dahlin T, Ohlsson T, Hogland H (2000) DC-resistivity mapping of internal landfill structures: two pre-excavation surveys. Environ Geol 39(3–4):360–371

    Article  Google Scholar 

  43. Høyer AS, Klint KES, Fiandaca G, Maurya PK, Christiansen AV, Balbarini N, Bjerg PL, Hansen TB, Møller I (2019) Development of a high-resolution 3D geological model for landfill leachate risk assessment. Eng Geol 249:45–59

    Article  Google Scholar 

  44. Jones F (2007) Applied geophysics learning objects: introduction to induced polarization surveying. Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Canada, British Columbia

    Google Scholar 

  45. Cardimona S (2002) Electrical resistivity techniques for subsurface investigation. Department of Geophysics, Missouri University of Science and Technology, USA

    Google Scholar 

  46. Araffa SAS (2012) Delineation of groundwater aquifer and subsurface structures on North Cairo, Egypt, using an integrated interpretation of magnetic, gravity, geoelectrical and geochemical data. Geophys J Int 192(1):94–112

    Article  Google Scholar 

  47. Pomposiello C, Dapeña C, Favetto A, Boujon P (2012) Application of geophysical methods to waste disposal studies. In: Municipal and industrial waste disposal. IntechOpen, Rejika. https://doi.org/10.5772/29615

    Book  Google Scholar 

  48. Olubusola IS, Adebo BA, Oladimeji OK, Ayodele A (2018) Application of GIS and multi-criteria decision analysis to geoelectric parameters for modeling of groundwater potential around Ilesha, Southwestern Nigeria. Eur J Acad Essays 5(5):105–123

    Google Scholar 

  49. Okpoli CC (2013) Sensitivity and resolution capacity of electrode configurations. Int J Geophys. https://doi.org/10.1155/2013/608037(Article ID 608037)

    Article  Google Scholar 

  50. Loke MH, Wilkinson PB, Chambers JE (2015) Rapid inversion of data from 2-D and from 3-D resistivity surveys with shifted electrodes. In: Near surface geoscience 2015–21st European meeting of environmental and engineering geophysics. European Association of Geoscientists and Engineers. Turin, Italy.

  51. IRIS Instruments (2014) Automatic resistivity meter for imaging. https://www.iris-instruments.com.

  52. Loke MH (2000) RES2DINV version 3.44 for Windows 95/98 and NT: rapid 2D resistivity and IP inversion using the least squares method. Adv Geosci

  53. Al-Yaqout AF (2016) In-situ hydraulic conductivity tests for compacted calcareous sands using Sealed Double Ring Infiltrometer (SDRI). J Eng Res 4(1):1–19

    Article  Google Scholar 

  54. Alipour S (2007) Classification of soils based on double ring measured permeability in Zarrineh-Roud Delta, Western Azarbayejan, Iran. Pak J Biol Sci 10:2522–2534

    Article  Google Scholar 

  55. Trautwein SJ, Boutwell GP (1994) In-situ hydraulic conductivity tests for compacted soil liners and caps. In: Hydraulic conductivity and waste contaminant transport in soil. ASTM Special Technical Publication, USA.

  56. Aller L, Lehr JH, Petty R, Bennett T (1987) Drastic: a standardized system to evaluate groundwater pollution potential using hydrogeological settings. U.S. Environmental Protection Agency, EPA/600/2-87–035, p 622

  57. ASTM (American Society for Testing and Materials) (2003) Standard test method for infiltration rate of soils in field using double-ring infiltrometer, vol 10. American Society for Testing and Materials

  58. Philip JR (1957) The theory of infiltration: 1. The infiltration equation and its solution. Soil Sci 83(5):345–358

    Article  Google Scholar 

  59. Jaynes RA, Gifford GF (1981) An in-depth examination of the Philip’s equation for cataloging infiltration characteristics in rangeland environments. J Range Manag 19:285–296

    Article  Google Scholar 

  60. Özkan B, Özceylan E, Sarıçiçek İ (2019) GIS-based MCDM modeling for landfill site suitability analysis: a comprehensive review of the literature. Environ Sci Pollut Res 20:1–20

    Google Scholar 

  61. USEPAa (United States Environmental Protection Agency) (2016) Environmental guidelines solid waste landfills. NSW Environment Protection Authority (EPA), Second edition, Report pollution and environmental incidents, p 95. www.epa.nsw.gov.au. Accessed 29 Nov 2018

  62. IDOEa (2010) Guidelines for siting MSW sanitary landfill. The Iranian Department of Environment publications, Office for Soil and Water Pollution Studies, Tehran (in Persian)

    Google Scholar 

  63. USEPAb (2006) Criteria for solid waste disposal facilities. EPA, Office of Solid Waste, Washington D.C.

    Google Scholar 

  64. IDOEb (2004) Waste management: rules and regulations of environmental protection in Iran. Department of the Environment publications, Legal and Parliament Affairs Office, Tehran (in Persian)

    Google Scholar 

  65. IDOEc (2001) The regulation of sanitary municipal solid waste dumpsite selection. Department of the Environment Publications, Tehran (in Persian)

    Google Scholar 

  66. Yazdani M, Monavari SM, Omrani GA, Shariat M, Hosseini SM (2017) A comparative evaluation of municipal solid waste landfill sites in northern Iran. Appl Ecol Environ Res 15(4):91–110

    Article  Google Scholar 

  67. Ghobadi MH, Taheri M, Taheri K (2017) Municipal solid waste landfill siting by using an analytical hierarchy process (AHP) and a proposed karst vulnerability index in Ravansar County, west of Iran. Environ Earth Sci 4(4):1823–1840. https://doi.org/10.1007/s12665-017-6392

    Article  Google Scholar 

  68. Afzali A, Sabri S, Rashid M, Saman JMV, Ludin ANM (2014) Inter-municipal dumpsite selection using the analytic network process. Water Resour Manag 28(8):2179–2194

    Article  Google Scholar 

  69. Alavi N, Goudarzi G, Babaei AA, Jaafarzadeh N, Hosseinzadeh M (2013) Municipal solid waste dumpsite selection with geographic information systems and analytical hierarchy process: a case study in Mahshahr County, Iran. Waste Manag Res 31(1):98–105

    Article  Google Scholar 

  70. Eskandari M, Homaee M, Mahmodi S (2012) Integrated multi-criteria approach for landfill siting in a conflicting environmental, economic and socio-cultural area. Waste Manag 32(8):1528–1538

    Article  Google Scholar 

  71. Nouri N, Poorhashemi SA, Monavari S, Dabiri F, Hassani AH (2011) Legal criteria and executive standards of solid waste disposal subjected to solid waste management act. Int J Environ Res 5(4):971–980

    Google Scholar 

  72. Moeinaddini M, Khorasani N, Danehkar A, Darvishsefat AA (2010) Siting MSW landfill using a weighted linear combination and analytical hierarchy process (AHP) methodology in a GIS environment (case study: Karaj). Waste Manag 30(5):912–920

    Article  Google Scholar 

  73. Sharifi M, Hadidi M, Vessali E, Mosstafakhani P, Taheri K, Shahoie S, Khodamoradpour M (2009) Integrating multicriteria decision analysis for a GIS-based hazardous waste landfill sitting in Kurdistan Province, western Iran. Waste Manag 29(10):2740–2758

    Article  Google Scholar 

  74. Aghanabati A (1998) Major sedimentary and structural units of Iran (map). Geosciences 7:29–30

    Google Scholar 

  75. Ishizaka A, Labib A (2009) Analytic hierarchy process and expert choice: benefits and limitations. OR Insight 22(4):201–220

    Article  Google Scholar 

  76. Expert Choice (2000) Expert choice Analytical Hierarchy Process (AHP) Software, Version, 9

  77. Teknomo K (2006) Analytic hierarchy process (AHP) tutorial. https://support.sas.com/techsup/technote/mr2010h.pdf.

  78. Saaty TL (2008) Decision-making with the analytic hierarchy process. Int J Serv Sci 1(1):83–98

    Google Scholar 

  79. Saaty TL (2001) The seven pillars of the analytic hierarchy process. Multiple criteria decision-making in the new millennium. Springer, Berlin, pp 15–37

    MATH  Google Scholar 

  80. Saaty TL (2003) Decision-making with the AHP: why is the principal eigenvector necessary? Eur J Oper Res 145(1):85–91

    Article  MathSciNet  MATH  Google Scholar 

  81. Forman EH (1990) Random indices for incomplete pairwise comparison matrices. Eur J Oper Res 48(1):153–155

    Article  Google Scholar 

  82. Eastman RJ (2001) Guide to GIS and image processing, release 32. Clark University, Clark Labs, Worcester

    Google Scholar 

  83. Drobne S, Lisec A (2009) Multi-attribute decision analysis in GIS: weighted linear combination and ordered weighted averaging. Informatica 33:4

    MATH  Google Scholar 

  84. Malczewski J (1999) GIS and multi-criteria decision analysis. Wiley, New York, p 392 (ISBN: 0471329444, 9780471329442)

    Google Scholar 

  85. Daniel C (1973) One-at-a-time plans. J Am Stat Assoc 68(342):353–360

    Article  Google Scholar 

  86. Chen MK, Wang SC (2010) The critical factors of success for the information service industry in developing the international market: using the analytic hierarchy process (AHP) approach. Expert Syst Appl 37(1):694–704

    Article  Google Scholar 

  87. Chandio IA, Matori AN, Yusof K, Talpur MH, Aminu M (2014) GIS-based land suitability analysis of sustainable hillside development. Proced Eng 77:87–94

    Article  Google Scholar 

  88. Bichet V, Grisey E, Aleya L (2016) Spatial characterization of leachate plume using electrical resistivity tomography in a landfill composed of old and new cells (Belfort, France). Eng Geol 211:61–73

    Article  Google Scholar 

  89. Meju M (2006) Geoelectrical characterization of covered landfill sites: a process-oriented model and investigative approach. In: Vereecken H, Binley A, Cassiani G, Revil A (eds) Applied hydrogeophysics, vol 11. Springer, NATO Series X, pp 319–339

    Chapter  Google Scholar 

  90. Chambers JE, Kuras O, Meldrum PI, Ogilvy RD, Hollands J (2006) Case history: electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site. Geophysics 71:B231–B239

    Article  Google Scholar 

  91. Koda E, Tkaczyk A, Lech M, Osiński P (2017) Application of electrical resistivity data sets for the evaluation of the pollution concentration level within landfill subsoil. Appl Sci 7(3):262

    Article  Google Scholar 

  92. Usda S (1986) Urban hydrology for small watersheds. USDA Tech Release 55:2–6

    Google Scholar 

  93. Alizadeh A (2015) Applied hydrology principles, 40 ed. University of Imam Reza, Iran (in Persian)

  94. Chitsazan M, Dehghani F, Rastmanesh F, Mirzaei Y (2013) Solid waste disposal site selection using spatial information echnologies and Fuzzy-AHP logic (case study: Ramhormoz). J Appl RS GIS Tech Nat Resour Sci 4(1):39–55

    Google Scholar 

  95. Foomani MS, Karimi S, Jafari H, Ghorbaninia Z (2017) Using boolean and fuzzy logic combined with analytic hierarchy process for hazardous waste landfill site selection: a case study from Hormozgan province. Adv Environ Technol 3(1):1–15

    Google Scholar 

  96. Santhosh LG, Sivakumar Babu GL (2018) Landfill site selection based on reliability concepts using the DRASTIC method and AHP integrated with GIS—a case study of Bengaluru city, India. Georisk Assess Manag Risk Eng Syst Geohazards 12(3):234–252

    Article  Google Scholar 

  97. Bahrani S, Ebadi T, Ehsani H, Yousefi H, Maknoon R (2016) Modeling landfill site selection by multi-criteria decision making and fuzzy functions in GIS, case study: Shabestar, Iran. Environ Earth Sci 75(4):337

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Saatsaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saatsaz, M., Mojallal, H., Monsef, I. et al. A multi-method approach to reevaluate the suitability of an old active dumpsite: an application in the Abhar Plain, Iran. J Mater Cycles Waste Manag 22, 578–603 (2020). https://doi.org/10.1007/s10163-019-00954-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-019-00954-x

Keywords

Navigation