Skip to main content
Log in

Prediction of heavy metals concentration in the leachate: a case study of Ukrainian waste

  • REGIONAL CASE STUDY
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

A lifetime of landfill with the waste composition and conditions specific to big and small towns of Ukraine is reproduced with landfill simulation reactors in 12-week period. The heavy metals concentrations (lead, nickel, chromium, cadmium) and physico-chemical parameters affecting (pH, reduction potential, conductivity, DOC, COD) are measured in the leachate formed during the reactors exploitation. The results show a quite high content of the heavy metals. Higher concentrations are found where more organic fraction is present in the waste. There are conditions inside the reactors, especially acidity, which are crucial at the early stages. Further, a significant impact can be caused by unequal distribution of heavy metals in the waste body. Also due to accelerated water regime in the reactors, the heavy metals concentrations in a landfill leachate are predicted up to 50–55 years. Forecast shows multiple (2–18 times) exceeding the allowable concentrations of all heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bozkurt S, Moreno L, Neretnieks I (2000) Long-term processes in waste deposits. Sci Total Environ 250:101–121

    Article  Google Scholar 

  2. Christensen T, Tjell J (1984) Leaching from land disposed municipal compost: 4. Heavy metals. Waste Manag Res 2:347–357

    Article  Google Scholar 

  3. Ehrig HJ (1989) Leachate quality. In: Christensen T, Cossu R, Stegmann R (eds) Sanitary landfilling: process, technology and environment impact. Academic Press, London, pp 213–229

    Google Scholar 

  4. Qu X, He PJ, Shao LM, Lee DJ (2008) Heavy metals mobility in full-scale bioreactor landfill: initial stage. Chemosphere 70(5):769–777

    Article  Google Scholar 

  5. Bozkurt S, Moreno L, Neretnieks I (1999) Long-term fate of organics in waste deposits and its effect on metal release. Sci Total Environ 228:135–152

    Article  Google Scholar 

  6. Christensen JB, Christensen TH (1999) Complexation of Cd, Ni, and Zn by DOC in polluted groundwater: a comparison of approaches using resin exchange, aquifer material sorption, and computer speciation models (WHAM and MINTEQA2). Environ Sci Technol 33(21):3857–3863

    Article  Google Scholar 

  7. Mor S, Ravindra K, Dahiya R, Chandra A (2006) Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site. Environ Monit Assess 118:435–456

    Article  Google Scholar 

  8. Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32(4):297–336

    Article  Google Scholar 

  9. Andreas L (2000) Langzeitemissionsverhalten von Deponien für Siedlungsabfälle in den neuen Bundesländern. Dr.-Ing. thesis, Technical University of Dresden, Germany

  10. Ehrig HJ, Höring K, Helfer A (1998) Mechanisch-biologische Behandlung von zu deponierenden Abfaellen. In: Teilvorhaben 3/4: Anforderungen an und Bewertung von biologischen Vorbehandlungen für die Ablagerung Abschlussbericht. Forschungsverbundvorhaben des Bundesministeriums für Bildung, Wissenschaft, Forschung und Technologie (Förderkennzeichen BMBF 1480964). Bergische Universität-Gesamthochschule Wuppertal, Germany

    Google Scholar 

  11. Heyer KU (2003) Emissionsreduzierung in der Deponienachsorge. Hamburger Berichte, Band 21. Verlag Abfall aktuell, Stuttgart

    Google Scholar 

  12. Nguyen XH (2011) A Laboratory Simulation of Municipal Solid Waste Biodegradation in Landfill Bioreactors. Dr.-Ing. thesis, Technical University of Dresden, Germany

  13. Bauer MJ, Herrmann R (1997) Estimation of the environmental contamination by phthalic acid esters leaching from household wastes. Sci Total Environ 208(1–2):49–57

    Article  Google Scholar 

  14. Belevi H, Baccini P (1989) Long-term behaviour of municipal solid waste landfills. Waste Manag Res 7:43–56

    Article  Google Scholar 

  15. Janz A (2010) Schwermetalle aus Elektroaltgeräten und Batterien im kommunalen Restabfall. Potenziale, Mobilisierung und Freisetzung während der Deponierung. Dr.-Ing. thesis, Technical University of Dresden, Germany

  16. Warith M (2002) Bioreactor landfills: experimental and field results. Waste Manag 22(1):7–17

    Article  Google Scholar 

  17. Bilgili MS, Demir A, Ince M, Örkaya B (2007) Metal concentrations of simulated aerobic and anaerobic pilot scale landfill reactors. J Hazard Mater 145:186–194

    Article  Google Scholar 

  18. Flyhammar P, Tamaddon F, Bengtsson L (1998) Heavy metals in a municipal solid waste deposition cell. Waste Manage Res 16(5):403–410

    Article  Google Scholar 

  19. Gertziuk M, Kovalchuk T, Kapral K, Lysychenko G (2010) The analysis of the leachate of the landfill No. 5 of Kyiv (in Ukrainian). Technog Environ Saf Civ Prot 1:98–105

    Google Scholar 

  20. Haydin M, Diakiv V, Pohrebennyk V, Pashuk A (2013) The chemical composition of the leachate of landfill of Lviv (in Ukrainian). Nat West Polissya Neighb Ter 10:43–49

    Google Scholar 

  21. Ishchenko V (2017) Soil contamination by heavy metal mobile forms near landfill. Int J Environ Waste Manag 20(1):66–74

    Article  Google Scholar 

  22. Sekman E, Top S, Varank G, Bilgili MS (2011) Pilot-scale investigation of aeration rate effect on leachate characteristics in landfills. Fresenius Environ Bull 20(7a):1841–1852

    Google Scholar 

  23. Erses AS, Onay TT (2003) In situ heavy metal attenuation in landfills under methanogenic conditions. J Hazard Mater 99(2):159–175

    Article  Google Scholar 

  24. Ciavatta C, Govi M, Pasotti L, Sequi P (1993) Evaluation of heavy metals during stabilization of organic matter in compost produced with municipal solid wastes. Bioresour Technol 43:147–153

    Article  Google Scholar 

  25. Flyhammar P, Håkansson K (1999) The release of heavy metals in stabilised MSW by oxidation. Sci Total Environ 243:291–303

    Article  Google Scholar 

  26. Kim H, Jang YC, Townsend T (2011) The behavior and long-term fate of metals in simulated landfill bioreactors under aerobic and anaerobic conditions. J Hazard Mater 194:369–377

    Article  Google Scholar 

  27. Altmann RS, Bourg AM (1997) Cadmium mobilisation under conditions simulating anaerobic to aerobic transition in a landfill leachate-polluted aquifer. Water Air Soil Pollut 94(3–4):385–392

    Article  Google Scholar 

  28. Andreas L, Bilitewski B (1999) Effects of waste quality and landfill technology on the long-term behaviour of municipal landfills. Waste Manag Res 17:413–423

    Article  Google Scholar 

  29. Ramke HG (1991) Hydraulische Beurteilung und Dimensionierung der Basisentwässerung von Deponien fester Siedlungsabfälle. Dr.-Ing. thesis, TU Braunschweig, Germany

  30. Rules of wastewater acceptance to municipal sewage systems of Ukrainian municipalities (2002) Decree No. 37 of the State Committee for Construction, Architecture and Residential Policy of Ukraine, 19.02.2002, Kyiv, Ukraine

  31. Fellner J, Döberl G, Allgaier G, Brunner PH (2009) Comparing field investigations with laboratory models to predict landfill leachate emissions. Waste Manag 29(6):1844–1851

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to express the gratitude to collective of the Institute of Waste Management and Contaminated Sites Treatment (Technical University of Dresden) for technical assistance as well as to Ministry of Education and Science of Ukraine for financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitalii Ishchenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishchenko, V. Prediction of heavy metals concentration in the leachate: a case study of Ukrainian waste. J Mater Cycles Waste Manag 20, 1892–1900 (2018). https://doi.org/10.1007/s10163-018-0740-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-018-0740-7

Keywords

Navigation