Skip to main content
Log in

Eco-friendly polymers mortar for floor covering based on dredged sediments of the north of France

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

The onshore management of marine and river sediments represents economic, environmental, and societal issues; these materials are considered as wastes after dredging. In the framework of the SEDIPLAST regional project, dredged sediments, which are considered as non-inert waste according to European regulation, are recovered as mineral aggregates in thermosetting polymeric matrix to formulate polymer mortars in the field of floor coverings. The formulations are optimized using the Packing Density Model, to determine the optimum density of the mixtures, thus allowing having the high mechanicals characteristics of material. These formulations are evaluated by mechanical, thermal, and chemical tests according to the French classification of durability which characterizes the soil of a locality according to its use (UPEC). The results showed that the polymer mortars including dredged sediments have excellent physical, mechanical, and thermal properties, such as low voids content and excellent chemical resistance properties. Finally, SEM observations of different mixtures allowed to give an explanation of the results observed in macroscopic scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Maherzi W, Benzerzour M, Mamindy-Pajany Y et al (2018) Beneficial reuse of Brest-Harbor (France)-dredged sediment as alternative material in road building: laboratory investigations. Environ Tech 39:566–580

    Article  Google Scholar 

  2. Brakni S, Abriak NE, Hequette A (2009) Formulation of artificial aggregates from dredged harbour sediments for coastline stabilization. Environ Tech 30:849–854

    Article  Google Scholar 

  3. Achour R, Abriak N-E, Zentar R et al. Valorization of unauthorized sea disposal dredged sediments as a road foundation material. Environ Tech. 1997–2007

  4. Millarath K, Kozlova S, Shimanovich S, Meyer C (2001) Beneficial use of dredged material 2. Columbia University in the city of New York, Department of civil engineering mechanics; second progress report

  5. Rodella N, Bosio A, Dalipi R et al (2017) Waste silica sources as heavy metal stabilizers for municipal solid waste incineration fly ash. Arab J Chem 10:S3676–S3681

    Article  Google Scholar 

  6. Achour R, Abriak N-E, Zentar R et al (2014) Valorization of unauthorized sea disposal dredged sediments as a road foundation material. Environ Tech 35:1997–2007

    Article  Google Scholar 

  7. Walker R, Pavía S (2011) Physical properties and reactivity of pozzolans, and their influence on the properties of lime–pozzolan pastes. Mater Struct 44:1139–1150

    Article  Google Scholar 

  8. Lynn CJ, Dhir RK, Ghataora GS et al (2015) Sewage sludge ash characteristics and potential for use in concrete. Construct Build Mater 98:767–779

    Article  Google Scholar 

  9. Gastaldini ALG, Hengen MF, Gastaldini MCC et al (2015) The use of water treatment plant sludge ash as a mineral addition. Construct Build Mater 94:513–520

    Article  Google Scholar 

  10. Rozière E, Samara M, Loukili A et al (2015) Valorisation of sediments in self-consolidating concrete: Mix-design and microstructure. Construct Build Mater 81:1–10

    Article  Google Scholar 

  11. Benkaddour M, Aoual FK, Semcha A (2009) Durabilité des mortiers à base de pouzzolane naturelle et de pouzzolane artificielle. Nat Tech J 41:63–73

    Google Scholar 

  12. Benzerzour M, Amar M, Abriak N-E (2017) New experimental approach of the reuse of dredged sediments in a cement matrix by physical and heat treatment. Construct Build Mater 140:432–444

    Article  Google Scholar 

  13. Dang TA, Kamali-Bernard S, Prince WA (2013) Design of new blended cement based on marine dredged sediment. Construct Build Mater 41:602–611

    Article  Google Scholar 

  14. Rozière et al. Valorisation of sediments in self-consolidating concrete. Construct Build Mater. 2015

  15. Gastaldini ALG, da Silva MP, Zamberlan FB et al (2014) Total shrinkage, chloride penetration, and compressive strength of concretes that contain clear-colored rice husk ash. Construct Build Mater 54:369–377

    Article  Google Scholar 

  16. Tironi A, Trezza MA, Scian AN et al (2013) Assessment of pozzolanic activity of different calcined clays. Cement Concr Compos 37:319–327

    Article  Google Scholar 

  17. Mebarkia S, Vipulanandan C (1995) Mechanical properties and water diffusion in polyester polymer concrete. J Eng Mech 121:1359–1365

    Article  Google Scholar 

  18. Heidari-Rarani M, Aliha MRM, Shokrieh MM et al (2014) Mechanical durability of an optimized polymer concrete under various thermal cyclic loadings—An experimental study. Construct Build Mater 64:308–315

    Article  Google Scholar 

  19. Elalaoui O, Ghorbel E, Mignot V et al (2012) Mechanical and physical properties of epoxy polymer concrete after exposure to temperatures up to 250 °C. Construct Build Mater 27:415–424

    Article  Google Scholar 

  20. Ribeiro MCS, Tavares CML, Ferreira AJM. Chemical resistance of epoxy and polyester polymer concrete to acids and salts. J Polymer Eng. 2002; 22

  21. Kou S-C, Poon C-S (2013) A novel polymer concrete made with recycled glass aggregates, fly ash and metakaolin. Construct Build Mater 41:146–151

    Article  Google Scholar 

  22. Rebeiz KS, Serhal SP, Craft AP (2004) Properties of Polymer concrete using fly ash. J Mater Civ Eng 16:15–19

    Article  Google Scholar 

  23. Benzannache N, Bezazi A, Bouchelaghem H et al (2018) Statistical analysis of 3-point bending properties of polymer concretes made from marble powder waste, sand grains, and polyester resin. Mech Compos Mater 53:781–790

    Article  Google Scholar 

  24. Bărbuţă M, Ţăranu N, Harja M (2009) Wastes used in obtaining polymer composite. Environ Eng Man J 8(5):1145–1150

    Google Scholar 

  25. Nóvoa PJRO, Ribeiro MCS, Ferreira AJM (2004) Mechanical behavior of cork-modified polymer concrete. Mater Sci Forum 455–456:805–809

    Article  Google Scholar 

  26. Ribeiro MCS, Nóvoa PJRO, Marques AT, Ferreira AJM. Mechanical characterization of lightweight wood modified polymer concrete. Revista SPM. 2004

  27. Lee BI, Burnett L, Miller T et al (1993) Tyre rubber/cement matrix composites. J Mater Sci Lett 12:967–968

    Article  Google Scholar 

  28. Du J, Bu Y, Guo S et al (2017) Effects of epoxy resin on ground-granulated blast furnace slag stabilized marine sediments. RSC Adv 7:36460–36472

    Article  Google Scholar 

  29. Association Française de Normalisation (AFNOR) (2008) Tests for mechanical and physical properties of aggregates part 7: determination of the particle density of filler—pycnometer method AFNOR. Standard No. NF EN 1097-7. Juin 2008

  30. Association, Française de Normalisation (AFNOR) (2006) Fine ceramics (advanced ceramics, advanced technical ceramics) determination of specific surface area of ceramic powders by gas adsorption using the BET method afnor. Standard No. NF EN ISO 18757

  31. Association Française de Normalisation (AFNOR) (1998) Soils: investigation and testing—determination of the organic matter content–Ignition method AFNOR. Standard No. XP P 94-047

  32. Association Française de Normalisation (AFNOR) (1998) Soils: investigation and testing - measuring of the methylene blue adsorption capacity of a rocky soil—determination of the methylene blue of a soil by means of the stain test. AFNOR. Standard No. NF P 94 – 068

  33. Thanh TN (2009) Valorisation de sédiments marins et fluviaux en technique routière, Ph.D. diss., Ecole des Mines de Douai (in French)

  34. Association Française de Normalisation (AFNOR) (2013) Leaching—compliance test for leaching of granular waste materials and sludges—Part 2: One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction). AFNOR, Brussels. Standard No. EN 12457-2:2002

    Google Scholar 

  35. Formulation des BERNIERG bétons (2004) 31. https://www.techniques-ingenieur.fr/base-documentaire/construction-et-travaux-publics-th3/les-betons-dans-la-construction-42221210/formulation-des-betons-C2210/

  36. Association Française de Normalisation (AFNOR) (2017) Methods of testing cement—part 3: determination of setting times and soundness afnor. Standard No. NF EN 196-3

  37. Lecomte A (2006) UMR L. indice de serrage des pâtes de consistance normale. Septième Edition des journées scientifique du regroupement francophone pour la recherche et la formation dans le domaine du béton, Toulouse, France

  38. Essai de compacité des fractions granulaires (2004) à la fi à secousses: mode opératoire. Laboratoire central des ponts et chaussées, Paris

    Google Scholar 

  39. Association Française de Normalisation (AFNOR) (2014) Tests for mechanical and physical properties of aggregates part 6: determination of particle density and water absorption AFNOR. Standard No. NF EN 1097-6

  40. Lokuge W, Aravinthan T (2013) Effect of fly ash on the behaviour of polymer concrete with different types of resin. Mater Des 51:175–181

    Article  Google Scholar 

  41. Association Française de Normalisation (AFNOR) (2014) CERAMIC TILES—PART 4: determination of modulus of rupture and breaking strength. AFNOR;. Standard No. NF EN ISO 10545-4

  42. Association Française de Normalisation (AFNOR) (2014) CERAMIC TILES—PART 8: determination of linear thermal expansion AFNOR. Standard No. NF EN ISO 10545-8

  43. Association Française de Normalisation (AFNOR).CERAMIC TILES—PART 9: Determination of resistance to thermal shock. AFNOR (2014) Standard No. NF EN ISO 10545-9

  44. Association Française de Normalisation (AFNOR) (2014) CERAMIC TILES—PART 13: Determination of chemical resistance. AFNOR. Standard No. NF EN ISO 10545-13

  45. Association Française de Normalisation (AFNOR).PART 6: Determination of resistance to deep abrasion for unglazed tiles. AFNOR (2014) Standard No. NF EN ISO 10545-6

  46. Scribot C, Maherzi W, Benzerzour M, Mamindy-Pajany Y, Abriak N-E. A laboratory-scale experimental investigation on the reuse of a modified red mud in ceramic materials production. Construct Build Mater. 2018

  47. Yeon K-S, Choi Y-S, Hyun S-H (2010) Properties of recycled polymer concrete using crushed polymer concrete as an aggregate. In: The 2nd international conference on SM&T; Ancona, Italy. Università politecnica delle marche, pp 1299–1308

  48. Haidar M, Ghorbel E, Toutanji H (2011) Optimization of the formulation of micro-polymer concretes. Construct Build Mater 25:1632–1644

    Article  Google Scholar 

  49. Sung C-Y, Kim Y-I (2012) Void ratio and durability properties of porous polymer concrete using recycled aggregate with binder contents for permeability pavement. J Appl Polymer Sci 126:E338–E348

    Article  Google Scholar 

  50. Tomas San-Jos J (2006) Mechanical properties in resin polyester concrete application to reinforced beams. Sci Eng Compos Mater 13:271–282

    Google Scholar 

  51. Ghorbel E, Haidar M (2016) Durability to chemical attack by acids of epoxy microconcretes by comparison to cementitious ones. Adv Civ Eng 2016:1–15

    Article  Google Scholar 

  52. Ribeiro MCS, Tavares CML, Ferreira AJM (2002) Chemical resistance of epoxy and polyester polymer concrete to acids. J Appl Polymer Sci 22(1):2002

    Google Scholar 

  53. Commission chargé de formuler des avis techniques. Notice sur le classement UPEC et Classement UPEC des locaux (2004). http://evaluation.cstb.fr/doc/classement/upec/cahier-3782.pdf

Download references

Acknowledgements

This project was initiated in the Haut de France Region, collaboration IMT LILLE DOUAI and the company Neo Eco Recycling. This project is financed by European funds FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilyas Ennahal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ennahal, I., Maherzi, W., Mamindy-Pajany, Y. et al. Eco-friendly polymers mortar for floor covering based on dredged sediments of the north of France. J Mater Cycles Waste Manag 21, 861–871 (2019). https://doi.org/10.1007/s10163-019-00843-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-019-00843-3

Keywords

Navigation