Skip to main content

Advertisement

Log in

Effects of fly ash addition on physical properties of porous clay-fly ash composites via polymeric replica technique

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

The porous composites of clay and fly ash have the potential to be used in many fields, such as catalyst support and gas adsorbents. In this study, various ratios of fly ash (1–2) with different percentage of suspension (50–70 wt%) were applied to produce porous clay-fly ash composites via polymeric replica technique. Fabrication process starts by mixing clay and fly ash in distilled water to form slurry. The process is followed by fully immersing polymer sponge in slurry. The excess slurry is then removed through squeezing. Finally, the sponge coated with slurry is sintered at 500 and 1250 °C for 1 h. It is found that the compressive strength of porous composites improves significantly (0.178–1.28 MPa) when the amount of clay-fly ash suspension mixture (50–70 wt%) increases. The compressive strength of porous composites is mainly attributed to the mullite, quartz and amorphous phase formations. These results are supported by X-ray diffraction analysis. On the other hand, increase in the amount of suspension reduces the apparent density (from 2.44 to 2.32 g/cm3) and porosity (from 97 to 85 %). The reduction in apparent density is believed to be caused by the presence of high fly ash content in porous composites. The melted fly ash cenospheres have closed the internal pores and increased density of samples. Higher suspension level not only reduces porosity, but also increases close pores of the porous composites. The results are justified through the observation from the structures of porous clay-fly ash composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Colombo P (2006) Conventional and novel processing methods for cellular ceramics. Philo Trans R Soc A 364:109. doi:10.1098/rsta.2005.1683

    Article  Google Scholar 

  2. Petrasch J, Meier F, Meier H, Friess H, Steinfeld A (2008) Int J Heat Fluid Fl 29:315. doi:10.1016/j.ijheatfluidflow.2007.09.001

    Article  Google Scholar 

  3. Ackermann S, Scheffe JR, Duss J, Steinfeld A (2014) Materials 7:7173. doi:10.3390/ma7117173

    Article  Google Scholar 

  4. Damoah LNW, Zhang L (2011) Acta Metall. 59:896. doi:10.1016/j.actamat.2010.09.064

    Google Scholar 

  5. Emmel M, Aneziris CG (2012) Ceram Int 38:5165. doi:10.1016/j.ceramint.2012.03.022

    Article  Google Scholar 

  6. Faure R, Rossignol F, Chartier T, Bonhomme C et al (2011) J Eur Ceram Soc 31:303. doi:10.1016/j.jeurceramsoc.2010.10.009

    Article  Google Scholar 

  7. Thompson CR, Marín P, Díez FV, Odóñez S (2013) Chem Eng J 221:44. doi:10.1016/j.cej.2013.01.080

    Article  Google Scholar 

  8. Lo YW, Wei WCJ, Hsueh CH (2011) Mater Chem Phys. 129:326. doi:10.1016/j.matchemphys.2011.04.023

    Article  Google Scholar 

  9. Zhang R, Feng J, Cheng X, Gong L, Li Y, Zhang H (2014) Energ Buildings 81:262. doi:10.1016/j.enbuild.2014.06.028

    Article  Google Scholar 

  10. Schwartzwalder K, Arthur VS (1963) Patent US3090094. May 21

  11. Muhamad Nor MAA, Lee CH, Ahmad ZA, Md Akil H (2008) J Mater Process Technol 207:235. doi:10.1016/j.jmatprotec.2007.12.099

  12. Binner J, in Cellular Ceramics: Structure, Manufacturing, Properties and Applications, eds. by M. Scheffler, P. Colombo (Wiley-VCH, Weinheim, 2005)

  13. Del-Gallo P, Cornillac M, Rossignol F, Faure R, Chartier T, Gary D (2011) Patent US20110097259 A1. April 28

  14. Lee JH, Choi HJ, Yoon SY, Kim BK, Park HC (2013) J Porous Mater 20:219. doi:10.1007/s10934-012-9591-0

    Article  Google Scholar 

  15. Kim KH, Yoon SY, Park HC (2014) Materials 7:5982. doi:10.3390/ma7085982

    Article  Google Scholar 

  16. Qian H, Cheng X, Zhang H, Zhang R, Wang YH (2014) Int J App Ceram Technol 11:858. doi:10.1111/ijac.12204

    Article  Google Scholar 

  17. Bowen NL, Greig JW (1924) J. Amer. Soc. 7:238. doi:10.1111/j.1151-2916.1924.tb18190.x

    Google Scholar 

  18. Jung JS, Park HC, Stevens R (2001) J Mater Sci Lett 20:1089. doi:10.1023/A:1010934728570

    Article  Google Scholar 

  19. Souto PM, Menezes RR, Kiminami RHGA (2009) J Mater Process Technol 209:548. doi:10.1016/j.jmatprotec.2008.02.029

    Article  Google Scholar 

  20. Anggono J (2005) Jurnal Teknik Mesin 7:1

    Google Scholar 

  21. Souto A, Guitian F, Aza S (1999) J Am Ceram Soc 82:2660. doi:10.1111/j.1151-2916.1999.tb02138.x

    Article  Google Scholar 

  22. Chmielarz L, Kuśtrowski P, Piwowarska Z, Dudek B, Gil B, Michalik M (2009) Appl Catal B Environ 88:331. doi:10.1016/j.apcatb.2008.11.001

  23. Bineesh KV, Kim DK, Kim MI, Park DW (2011) Appl Clay Sci 53:204. doi:10.1016/j.clay.2010.12.022

    Article  Google Scholar 

  24. Pinto ML, Marques J, Pires J (2012) Sep Purif Technol 98:337. doi:10.1016/j.seppur.2012.07.003

    Article  Google Scholar 

  25. Sarkar S, Bandyopadhyay S, Larbot A, Cerneaux S (2012) J. Membr. Sci. 392–393:130. doi:10.1016/j.memsci.2011.12.010

    Article  Google Scholar 

  26. Sengphet KKD, K. Pasomsouk, T. Sato, M.N. Ahmad Fauzil, Radzali O (2013) Int J Sci Res Pub 3:1

  27. Görhan G, Şimşek O (2013) Constr Build Mater 40:390. doi:10.1016/j.conbuildmat.2012.09.110

    Article  Google Scholar 

  28. Koseonglu K, Polat M, Polat H (2010) J Hazard Mater 176:957. doi:10.1016/j.jhazmat.2009.11.133

    Article  Google Scholar 

  29. Zhang HY, Zhao YC, Qi JY (2011) Waste Manage 31:331. doi:10.1016/j.wasman.2010.10.017

    Article  Google Scholar 

  30. El-Didamony H, El-Rahman EA, Osman RM (2012) Ceram Int 38:201. doi:10.1016/j.ceramint.2011.06.050

    Article  Google Scholar 

  31. Sukmak P, Horpibulsuk S, Shen SL, Chindaprasirt P, Suksiripattanapong C (2013) Constr Build Mater 47:1125. doi:10.1016/j.conbuildmat.2013.05.104

    Article  Google Scholar 

  32. Sukmak P, Horpibulsuk S, Shen SL (2013) Constr Build Mater 40:566. doi:10.1016/j.conbuildmat.2012.11.015

    Article  Google Scholar 

  33. Phetchuay C, Horpibulsuk S, Suksiripattanapong C, Chinkulkijniwat A, Arulrajah A, Disfani MM (2014) Constr Build Mater 69:285. doi:10.1016/j.conbuildmat.2014.07.018

    Article  Google Scholar 

  34. Jamaludin AR, Kasim SR, Abdullah MZ (2014) Zainal A. Ahmad. Ceram Int 40:4777. doi:10.1016/j.ceramint.2013.09.023

    Article  Google Scholar 

  35. Jovanovic M, Volkov-Husovic T (2012) Sci Sinter 44:161–168. doi:10.2298/SOS1202161J

    Article  Google Scholar 

  36. ASTM International (2012) ASTM C 618-12 Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete, United States.

  37. Chinese National Standard (1996) GB/T 1964-1996 Test method for crushing strength of porous ceramic. GB/T, Beijing

    Google Scholar 

  38. Schneider H, Okada K, Pask J (1994) Mullite and Mullite Ceramics. Wiley, Chichester, pp 83–104

    Google Scholar 

  39. Schairer JF, Bowen NL (1955) Amer. J. Sci. 253:681. doi:10.2475/ajs.253.12.681

    Article  Google Scholar 

  40. Muan A (1957) J Am Ceram Soc 40:121. doi:10.1111/j.1151-2916.1957.tb12588.x

    Article  Google Scholar 

  41. Snow RB (1943) J. Europe. Ceram. Soc. 2:11. doi:10.1111/j.1151-2916.1943.tb15177.x

    Article  Google Scholar 

  42. Cangemi JM, Claro Neto S, Chierice GO, Santos AM (2006) Polímeros, 16:129. doi: 10.1590/S0104-14282006000200013

  43. Trovati G, Sanches SA, Neto SC, Mascarenhas YP, Chierice GO (2010) J Appl Polymer Sci 115:263. doi:10.1002/app.31096

    Article  Google Scholar 

  44. Monash P, Niwas R, Pugazhenthi G (2011) Clean Technol Environ. Policy 13:141. doi:10.1007/s10098-010-0292-6

    Google Scholar 

  45. Souza AE, Teixeira SR, Santos GTA, Longo E (2013) Ceramica 59:147. doi:10.1590/S0366-69132013000100017

    Google Scholar 

  46. Murray HH (2007) Applied clay mineralogy: occurances, processing and applications of kaolins. Elsevier, Kidlington, pp 85–110

    Google Scholar 

  47. Gabal MA, Hoff D, Kasper G (2007) J. Therm. Anal. Calorim. 89:109. doi:10.1007/s10973-005-7494-x

    Article  Google Scholar 

  48. Ferrari S, Belevi H, Baccini P (2002) Waste Manage 22:303. doi:10.1016/S0956-053X(01)00049-6

    Article  Google Scholar 

  49. Rocca S, van Zomeren A, Costa G, Dijkstra JJ, Comans RNJ, Lombardi F (2013) Waste Manage 33:373. doi:10.1016/j.wasman.2012.11.004

    Article  Google Scholar 

  50. Paya J, Monzo J, Borrachero MV, Perris E, Amahjour F (1998) Cement Concrete Res 28:675. doi:10.1016/S0008-8846(98)00030-1

    Article  Google Scholar 

  51. Liu KC, Thomas G, Caballero A, Moya JS, de Aza S (1994) J Am Ceram Soc 77:1545. doi:10.1111/j.1151-2916.1994.tb09755.x

    Article  Google Scholar 

  52. Sultana P, Das S, Bagchi B, Bhattacharya A, Basu R, Nandy P (2011) Bull Mater Sci 34:1663. doi:10.1007/s12034-011-0374-z

    Article  Google Scholar 

  53. Nour WMN, Awad HM (2008) J Aust Ceram Soc 44:27

    Google Scholar 

  54. Kumar S, Singh KK, Ramachandrarao P (2001) J Mater Sci 36:5917. doi:10.1023/A:1012936928769

    Article  Google Scholar 

  55. Rajamannan B, Kalyana C (2013) Sundaram, G. Viruthagiri, N. Shanmugam. Int J Latest Sci Technol 2:486

    Google Scholar 

  56. Dong YC, Diwu J, Feng XF, Feng XY, Liu XQ, Meng GY (2008) J Alloys Compd 460:651. doi:10.1016/j.jallcom.2007.06.043

    Article  Google Scholar 

  57. Dong YC, Hampshire S, Zhou JE, Jin ZL, Wang JD, Meng GY (2011) J Europe Ceram Soc 31:687. doi:10.1016/j.jeurceramsoc.2010.12.012

    Article  Google Scholar 

  58. Rohatgi PK, Menzes PL, Lovell MR (2012) In: By M. Nosonovsky, B. Bhushan (eds) Green Tribology, Green Energy and Technology. Springer, Berlin. p 429

  59. Zhao Y, Wang C, Xu H, Liu J (2012) Adv Mater Res 415–417:1038. doi:10.4028/www.scientific.net/AMR.415-417.1038

    Google Scholar 

  60. Shao YF, Jia DC, Liu BY (2009) J Eur Ceram Soc 29:1529. doi:10.1016/j.jeurceramsoc.2008.09.012

    Article  Google Scholar 

  61. Wang CF, Liu JC, Du HY (2012) A Guo 38:4395. doi:10.1016/j.ceramint.2012.01.044

    Google Scholar 

  62. Montanaro J, Jorand Y et al (1998) J Eur Ceram Soc 18:1339. doi:10.1016/S0955-2219(98)00063-6

    Article  Google Scholar 

  63. Han YS, Li JB, Chen YJ (2003) Mater Res Bull 38:373. doi:10.1016/S0025-5408(02)01026-7

    Article  Google Scholar 

  64. Akpinar S, Altun IA, Onel K (2010) J Europe Ceram Soc 30:2727. doi:10.1016/j.jeurceramsoc.2010.05.005

    Article  Google Scholar 

  65. Liu P, Chen GF (2014) Porous materials: processing and applications. Elsevier, Kidlington, pp 221–302

    Book  Google Scholar 

  66. Guo Y, Zhang Y, Huang H, Meng K, Hu K, Hu P (2014) Ceram Int 40:6677. doi:10.1016/j.ceramint.2013.11.128

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Ministry of Higher Education Malaysia (FRGS Grant No.: 9003-00412) for supporting the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Mazlee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, W.H., Mazlee, M.N., Ahmad, Z.A. et al. Effects of fly ash addition on physical properties of porous clay-fly ash composites via polymeric replica technique. J Mater Cycles Waste Manag 19, 794–803 (2017). https://doi.org/10.1007/s10163-016-0481-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-016-0481-4

Keywords

Navigation