Skip to main content
Log in

Microbial dynamics in the process of restoration of groundwater contaminated by chlorinated ethene in the presence of Escherichia coli

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

This study investigated the effects of hygiene indicator bacteria during the biostimulation of groundwater contaminated with chlorinated ethene. We showed the state of dechlorination activity and behavior of microbial structure by the addition of Escherichia coli (E. coli) as hygiene indicator bacteria in a contaminated groundwater sample. Dechlorination of tetrachloroethene and trichloroethene to cis-1,2-dichloroethene (cis-DCE) within 14 days took place similarly both with and without the addition of E. coli. This indicated that inhibition of against dechlorinating activity of corresponding dechlorinating bacteria was not caused by E. coli. Structural change of the bacterial community was analyzed both before and after dechlorination using a denaturing gradient gel electrophoresis (DGGE) and clone library. The result of DGGE detected E. coli only at day 0. A sample at day 14 after dechlorination detected Pseudomonas putida, Anaerosinus glycerini, and Clostridium genus but not E. coli. The result of the clone library also showed an identical profile. Detection of E. coli using desoxycholate media was decreased from 2.3 × 106 cells/ml to 6.0 × 103 cells/ml during day 14. These results suggest that biostimulation of groundwater contaminated by chlorinated ethene in the presence of hygiene bacteria caused the dechlorination without activity inhibition and decrease of dechlorinating bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Agency for Toxic Substances and Disease Registry (1996) Toxicology profile for tetrachloroethylene (up-date), Atlanta

  2. Ikeda M, Imanura T (1973) Biological half-life of trichloroethylene and tetrachloroethylene in human subjects. Int Arch Arbeitsmed 31:209–224

    Article  Google Scholar 

  3. Beccari M, Majone M, Piemontese G, Tandoi V, Tomei MC (1998) Reductive dechlorination of tetrachloroethene by an anaerobic microbial consortium. Chim Ind 80:63–72

    Google Scholar 

  4. Agency for Toxic Substances and Disease Registry (2003) toxFAQsTM for trichloroethylene (TCE), Atlanta

  5. Freedman DL, Gossett JM (1989) Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl Environ Microbiol 55:2144–2151

    Google Scholar 

  6. Loffler FE, Sanford RA, Tiedje JM (1996) Initial characterization of a reductive dehalogenase from Desulfitobacterium chlororespirans Co23. Appl Environ Microbiol 62:3809–3813

    Google Scholar 

  7. Holliger C, Hahn D, Harmsen H, Ludwig W, Schumacher W, Tindall B, Vazquez F, Weiss N, Zehnder AJ (1998) Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration. Arch Microbiol 169:313–321

    Article  Google Scholar 

  8. Utkin I, Woese C, Wiegel J (1994) Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds. Int J Syst Bacteriol 44:612–619

    Article  Google Scholar 

  9. Gerritse J, Renard V, Pedro Gomes TM, Lawson PA, Collins MD, Gottschal JC (1996) Desulfitobacterium sp. strain PCE 1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch Microbiol 165:132–140

    Article  Google Scholar 

  10. Maillard J, Schumacher W, Vazquez F, Regeard C, Hagen WR, Holliger C (2003) Characterization of the corrinoid iron-sulfur protein tetrachloroethene reductive dehalogenase of Dehalobacter restrictus. Appl Environ Microbiol 69:4628–4638

    Article  Google Scholar 

  11. Neumann A, Engelmann T, Schmitz R, Greiser Y, Orthaus A, Diekert G (2004) Phenyl methyl ethers: novel electron donors for respiratory growth of Desulfitobacterium hafniense and Desulfitobacterium sp. strain PCE-S. Arch Microbiol 181:245–249

    Article  Google Scholar 

  12. Gerritse J, Drzyzga O, Kloetstra G, Keijmel M, Wiersum LP, Hutson R, Collins MD, Gottschal JC (1999) Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1. Appl Environ Microbiol 65:5212–5221

    Google Scholar 

  13. Krumholz LR (1997) Desulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors. Int J Syst Bacteriol 47:1262–1263

    Article  Google Scholar 

  14. Sung Y, Ritalahti KM, Sanford RA, Urbance JW, Flynn SJ, Tiedje JM, Löffler FE (2003) Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov. Appl Environ Microbiol 69:2964–2974

    Article  Google Scholar 

  15. Sung Y, Fletcher KE, Ritalahti KM, Apkarian RP, Ramos-Hernández N, Sanford RA, Mesbah NM, Löffler FE (2006) Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Appl Environ Microbiol 72:2775–2782

    Article  Google Scholar 

  16. Chang YC, Okeke BC, Hatsu M, Takamizawa K (2001) In vitro dehalogenation of tetrachloroethylene (PCE) by cell-free extracts of Clostridium bifermentans DPH-1. Bioresour Technol 78:141–147

    Article  Google Scholar 

  17. Maymo-Gatell X, Anguish T, Zinder SH (1999) Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethene by “Dehalococcoides ethenogenes” 195. Appl Environ Microbiol 65:3108–3113

    Google Scholar 

  18. Rahm BG, Chauhan S, Holmes VF, Macbeth TW, Sorenson KS, Alvarez-Cohen L (2006) Molecular characterization of microbial populations at two sites with differing reductive dechlorination abilities. Biodegradation 17:523–534

    Article  Google Scholar 

  19. Sharma PK, McCarty PL (1996) Isolation and characterization of a facultatively aerobic bacterium that reductively dehalogenates tetrachloroethene to cis-1,2-dichloroethene. Appl Environ Microbiol 62:761–765

    Google Scholar 

  20. Lowe M, Madsen EL, Schindler K, Smith C, Emrich S, Robb F, Halden RU (2002) Geochemistry and microbial diversity of a trichloroethene-contaminated Superfund site undergoing intrinsic in situ reductive dechlorination. FEMS Microbiol Ecol 40:123–134

    Article  Google Scholar 

  21. Miller TR, Franklin MP, Halden RU (2007) Bacterial community analysis of shallow groundwater undergoing sequential anaerobic and aerobic chloroethene biotransformation. FEMS Microbiol Ecol 60:299–311

    Article  Google Scholar 

  22. Nemir A, David MM, Perrussel R, Sapkota A, Simonet P, Monier JM, Vogel TM (2010) Comparative phylogenetic microarray analysis of microbial communities in TCE-contaminated soils. Chemosphere 80:600–607

    Article  Google Scholar 

  23. Macbeth TW, Cummings DE, Spring S, Petzke LM, Sorenson KS (2004) Molecular characterization of a dechlorinating community resulting from in situ biostimulation in a trichloroethene-contaminated deep, fractured basalt aquifer and comparison to a derivative laboratory culture. Appl Environ Microbiol 70:7329–7341

    Article  Google Scholar 

  24. Bhowmik A, Asahino A, Shiraki T, Nakamura K, Takamizawa K (2009) In situ study of tetrachloroethylene bioremediation with different microbial community shifting. Environ Technol 30(14):1607–1614

    Article  Google Scholar 

  25. Lee J, Lee TK, Löffler FE, Park J (2010) Characterization of microbial community structure and population dynamics of tetrachloroethene-dechlorinating tidal mudflat communities. Biodegradation 22:687–698

    Article  Google Scholar 

  26. Aydin A (2007) The microbiological and physico-chemical quality of groundwater in West Thrace, Turkey; Polish. J Environ Stud 16(3):377–383

    Google Scholar 

  27. Bhowmik A, Ishimura K, Nakamura K, Takamizawa K (2012) Degradation activity of Clostridium species DC-1 in the cis-1,2-dichloroethylene contaminated site in the presence of indigenous microorganisms and Escherichia coli. J Mater Cycles Waste Manag

  28. Annie R, Pierre S, Julia B, Marie R, Patrick L (2002) Detection and enumeration of coliforms in drinking water: current methods and emerging approaches. J Microbiol Methods 49:31–54

    Article  Google Scholar 

  29. TA cloning protocol (2009) Durham: Hubbart Center for Genomic Studies

  30. Hazen TC, Faybishenko B, Beller HR, Brodie EL, Sonnenthal EL, Steefel C, Larsen J, Conrad ME, Bill M, Christensen JN, Brown ST, Joyner D, Borglin SE, Geller JT, Chakraborty R, Nico PS, Long PE, Newcomer DR, Arntzen E (2011) The Smithsonian/NASA Astrophysics Data System. Comparison of field groundwater biostimulation experiments using polylactate and lactate solutions at the Chromium-Contaminated Hanford 100-H Site. American Geophysical Union, Fall Meeting

  31. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Google Scholar 

  32. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  Google Scholar 

  33. Hata J, Miyata N, Kim E, Takamizawa K, Iwahori K (2004) Anaerobic degradation of cis-1,2-dichloroethylene and vinyl chloride by Clostridium sp. Strain DC-1 isolated from landfill leachate sediment. JBB 97(3):196–201

    Google Scholar 

  34. Kim E-S, Nomura I, Hasegawa Y, Takamizawa K (2006) Characterization of a newly isolated cis-1,2-dichloroethylene and aliphatic compound-degrading bacterium, Clostridium sp. Strain KYT-1. Biotechnol Bioprocess Eng 11:553–556

    Article  Google Scholar 

  35. Andrew JW, Alison LW, Howard SJ (1982) Stereospecificity of 2-monochloropropionate dehalogenation by the two dehalogenases of Pseudomonas putida PP3: evidence for two different dehalogenation mechanisms. J Gen Microbiol 128(8):1755–1762

    Google Scholar 

  36. Garg SK, Tripathi M, Kumar S, Singh SK (2012) Microbial dechlorination of chloroorganics and simultaneous decolorization of pulp-paper mill effluent by Pseudomonas putida MTCC 10510 augmentation. Environ Monit Assess 184(9):5533–5544

    Article  Google Scholar 

  37. Garg SK, Tripathi M, Singh SK, Singh A (2012) Pentachlorophenol dechlorination and simultaneous Cr(6+) reduction by Pseudomonas putida SKG-1 MTCC (10510): characterization of PCP dechlorination products, bacterial structure, and functional groups. Environ Sci Pollut Res Int

  38. Moreau JW, Zierenberg RA, Banfield JF (2010) Diversity of dissimilatory sulfite reductase genes (dsrAB) in a salt marsh impacted by long-term acid mine drainage. Appl Environ Microbiol 76(14):4819–4828

    Article  Google Scholar 

  39. Eva-Maria B, Sebastian B, Denise MA, Georg B, Kirsten K (2011) Heavy metal tolerance of Fe(III)-reducing microbial communities in contaminated creek bank soils. Appl Environ Microbiol 77(9):3132–3136

    Article  Google Scholar 

  40. Flanigan D, Rodgers M (2003) A method to detect viable Helicobacter pylori bacteria in groundwater. Acta Hydrochim Hydrobiol 31(1):45–48

    Article  Google Scholar 

  41. Maggy M, Veronica M, Jacques T (2006) Abundance of pathogenic Escherichia coli, Salmonella typhimurium and Vibrio cholerae in Nkonkobe drinking water sources. J Water Health 4(3):289–296

    Google Scholar 

  42. Frank J, Donald E, Douglas R (2002) PCR detection of specific pathogens in water: a risk-based analysis. Environ Sci Technol 36(12):2754–2759

    Article  Google Scholar 

  43. Effect of Treatment on Nutrient Availability; EPA United States Environmental Protection Agency (2007). http://www.epa.gov/ogwdw/disinfection/tcr/pdfs/issuepaper_tcr_treatment-nutrients.pdf

  44. Pieter TJ, Johnson AR, Townsend CC, Patricia MG, Robert WH, Valerie JM, Eliska R, Mary HW (2010) Linking environmental nutrient enrichment and disease emergence in humans and wildlife. Ecol Appl 20(1):16–29

    Article  Google Scholar 

  45. http://www.dietrichidaho.com/public-works/idaho-rules-for-public-drinking-water-systems/idaho-rules-for-public-drinking-water-systems.pdf. Accessed 2 Feb 2013

  46. http://www.deq.idaho.gov/water-quality/wastewater/septic-systems/nutrient-pathogen-evaluations.aspx. Accessed 2 Feb 2013

  47. Rittmann BE (2004) Definition, objectives, and evaluation of natural attenuation. Biodegradation 15:349–357

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Panasonic Environmental System and Engineering Co. Ltd, for providing groundwater sample used in this study. We also express our special thanks to Professor Fuseng Li, River Basin Research Center, Gifu University, for supporting part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Takamizawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arpita, B., Ishimura, K., Nakamura, K. et al. Microbial dynamics in the process of restoration of groundwater contaminated by chlorinated ethene in the presence of Escherichia coli . J Mater Cycles Waste Manag 15, 335–341 (2013). https://doi.org/10.1007/s10163-013-0124-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-013-0124-y

Keywords

Navigation