Skip to main content
Log in

Echolocating Bats Have Evolved Decreased Susceptibility to Noise-Induced Temporary Hearing Losses

  • Review
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Glenis Long championed the application of quantitative psychophysical methods to understand comparative hearing abilities across species. She contributed the first psychophysical studies of absolute and masked hearing sensitivities in an auditory specialist, the echolocating horseshoe bat. Her data demonstrated that this bat has hyperacute frequency discrimination in the 83-kHz range of its echolocation broadcast. This specialization facilitates the bat’s use of Doppler shift compensation to separate echoes of fluttering insects from concurrent echoes of non-moving objects. In this review, we discuss another specialization for hearing in a species of echolocating bat that contributes to perception of echoes within a complex auditory scene. Psychophysical and behavioral studies with big brown bats show that exposures to long duration, intense wideband or narrowband ultrasonic noise do not induce significant increases in their thresholds to echoes and do not impair their ability to orient through a naturalistic sonar scene containing multiple distracting echoes. Thresholds of auditory brainstem responses also remain low after intense noise exposures. These data indicate that big brown bats are not susceptible to temporary threshold shifts as measured in comparable paradigms used with other mammals, at least within the range of stimulus parameters that have been tested so far. We hypothesize that echolocating bats have evolved a decreased susceptibility to noise-induced hearing losses as a specialization for echolocation in noisy environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Long GR (1994) Psychophysics. In: Fay RR, Popper AN (eds) Comparative hearing: mammals. Springer-Verlag, New York, pp 18–56

    Chapter  Google Scholar 

  2.  Slabbekoorn S, Dooling RJ, Popper AN, Fay RR (eds) (2018) Effects of anthropogenic noise on animals. Springer Nature New York and ASA Press. https://doi.org/10.1007/978-1-4939-8574-6

  3. Griffin DR (1958) Listening in the dark. Yale University Press, reprinted Cornell University Press 1986

  4. Simmons JA (1971) Echolocation in bats: signal processing of echoes for target range. Science 171(3974):925–928. https://doi.org/10.1126/science.171.3974.925

    Article  CAS  PubMed  Google Scholar 

  5. Dalland JI (1965) Hearing sensitivity in bats. Science 150:1185–1186. https://doi.org/10.1126/science.150.3700.1185

    Article  CAS  PubMed  Google Scholar 

  6. Long GR, Schnitzler H-U (1975) Behavioural audiograms from the bat, Rhinolophus ferrumequinum. J Comp Physiol 100:211–219. https://doi.org/10.1007/BF00614531

    Article  Google Scholar 

  7. Schnitzler H-U, Denzinger A (2011) Auditory fovea and Doppler shift compensation: adaptations for flutter detection in echolocating bats using CF-FM signals. J Comp Physiol A 197:541–559. https://doi.org/10.1007/s00359-010-0569-6

    Article  Google Scholar 

  8. Suga N, Neuweiler G, Möller J (1975) Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. IV. Properties of peripheral auditory neurons. J Comp Physiol 106:111–125. https://doi.org/10.1007/BF00606576

    Article  Google Scholar 

  9. Bruns V (1976) Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. II. Frequency mapping in the cochlea. J Comp Physiol 106:87–97. https://doi.org/10.1007/BF00606574

    Article  Google Scholar 

  10. Lattenkamp EZ, Nagy M, Drexl M, Vernes SC, Wiegrebe L, Knörnschild M (2021) Hearing sensitivity and amplitude coding in bats are differentially shaped by echolocation calls and social calls. Proc R Soc B 288:20202600. https://doi.org/10.1098/rspb.2020.2600

    Article  PubMed  PubMed Central  Google Scholar 

  11. Long GR (1977) Masked auditory thresholds from the bat Rhinolophus ferrumequinum. J Comp Physiol 116:247–255. https://doi.org/10.1007/BF00605406

    Article  Google Scholar 

  12. Fay RR (1988) Comparative psychophysics. Hear Res 34(3):295–305. https://doi.org/10.1016/0378-5955(88)90009-3

    Article  CAS  PubMed  Google Scholar 

  13. Suthers RA, Summers CA (1980) Behavioral audiogram and masked thresholds of the megachiropteran echolocating bat, Rousettus. J Comp Physiol 136:227–233. https://doi.org/10.1007/BF00657537

    Article  Google Scholar 

  14. Bohn KM, Boughman JW, Wilkinson GS, Moss CF (2004) Auditory sensitivity and frequency selectivity in greater spear-nosed bats suggest specializations for acoustic communication. J Comp Physiol A 190:185–192. https://doi.org/10.1007/s00359-003-0485-0

    Article  CAS  Google Scholar 

  15. von Stebut B, Schmidt S (2001) Frequency discrimination threshold at search call frequencies in the echolocating bat, Eptesicus fuscus. J Comp Physiol A 187:287–291. https://doi.org/10.1007/s00359-010-0200

    Article  Google Scholar 

  16. Long GR (1980) Further studies of masking in the greater horseshoe bat, Rhinolophus ferrumequinum. In: Busnel R-G, Fish JF (eds) Animal sonar systems. Plenum Press, New York, pp 929–932

    Chapter  Google Scholar 

  17. Griffin DR, McCue JJG, Grinnell AD (1963) The resistance of bats to jamming. J Exp Zool 152:229–250

    Article  Google Scholar 

  18. Holderied MW, Korine C, Fenton M, Parsons S, Robson S, Jones G (2005) Echolocation call intensity in the aerial hawking bat Eptesicus bottae (Vespertilionidae) studied using stereo videogrammetry. J Exp Biol 208:1321–1327. https://doi.org/10.1242/jeb.01528

    Article  PubMed  Google Scholar 

  19. Jakobsen L, Brinklov S, Surlykke A (2013) Intensity and directionality of bat echolocation signals. Front Physiol 4:89. https://doi.org/10.3389/fphys.2013.00089

    Article  PubMed  PubMed Central  Google Scholar 

  20. Stilz WP, Schnitzler H-U (2012) Estimation of the acoustic range of bat echolocation for extended targets. J Acoust Soc Am 132:1765–1775

    Article  PubMed  Google Scholar 

  21. Hartley D, Suthers R (1989) The sound emission pattern of the echolocating bat, Eptesicus fuscus. J Acoust Soc Am 85:1348–1351. https://doi.org/10.1121/1.397466

    Article  Google Scholar 

  22. Ghose K, Moss CF (2003) The sonar beam pattern of a flying bat as it tracks tethered insects. J Acoust Soc Am 114:1120–1131. https://doi.org/10.1121/1.1589754

    Article  PubMed  Google Scholar 

  23. Ming C, Bates ME, Simmons JA (2020) How frequency hopping suppresses pulse-echo ambiguity in bat biosonar. Proc Natl Acad Sci USA 17(29):17288–17295. https://doi.org/10.1073/pnas.2001105117

    Article  CAS  Google Scholar 

  24. Smotherman MS, Simmons AM, Simmons JA (2021) How noise affects bats and what it reveals about their biosonar systems. In: Lim B, Fenton B, Brigham M, Mistry S, Kurta A, Gillam E, Russell A, Ortega J (eds) 50 years of bat research: foundations and new frontiers. Springer-Verlag, New York, pp 61–76

    Chapter  Google Scholar 

  25. Hiryu S, Bates ME, Simmons JA, Riquimaroux H (2010) FM echolocating bats shift frequencies to avoid broadcast-echo ambiguity in clutter. Proc Natl Acad Sci USA 107:7048–7053. https://doi.org/10.1073/pnas.1000429107

    Article  PubMed  PubMed Central  Google Scholar 

  26. Moss CF, Bohn K, Gilkenson H, Surlykke A (2006) Active listening for spatial orientation in a complex auditory scene. PLoS Biol 4:615–626. https://doi.org/10.1371/journal.pbio.0040079

    Article  CAS  Google Scholar 

  27. Petrites AE, Eng OS, Mowlds DS, Simmons JA, DeLong CM (2009) Interpulse interval modulation by echolocating big brown bats (Eptesicus fuscus) in different densities of obstacle clutter. J Comp Physiol A 195:603–617. https://doi.org/10.1007/s00359-009-0435-6

    Article  Google Scholar 

  28. Kothari NB, Wohlgemuth MJ, Hulgard K, Surlykke A, Moss CF (2014) Timing matters: sonar call groups facilitate target localization in bats. Front Physiol 5:168. https://doi.org/10.3389/fphys.2014.00168

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wheeler AR, Fulton KA, Gaudette JE, Simmons RA, Matsuo I, Simmons JA (2016) Echolocating big brown bats, Eptesicus fuscus, modulate pulse intervals to overcome range ambiguity in cluttered surroundings. Front Behav Neurosci 10:125. https://doi.org/10.3389/fnbeh.2016.00125

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tuninetti A, Ming C, Hom KN, Simmons JA, Simmons AM (2021) Spatiotemporal patterning of acoustic gaze in echolocating bats navigating gaps in clutter. iScience 24:102353. https://doi.org/10.1016/j.isci.2021.102353

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hage SR, Jiang T, Berquist SW, Feng J, Metzner W (2013) Ambient noise induces independent shifts in call frequency and amplitude within the Lombard effect in echolocating bats. Proc Natl Acad Sci 110:4063–4068. https://doi.org/10.1073/pnas.1211533110

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lu M, Zhang G, Luo J (2020) Echolocating bats exhibit differential amplitude compensation for noise interference at a sub-call level. J Exp Biol 223(19):jeb225284. https://doi.org/10.1242/jeb.225284

    Article  PubMed  Google Scholar 

  33. Tressler J, Smotherman MS (2009) Context-dependent effects of noise on echolocation pulse characteristics in free-tailed bats. J Comp Physiol A 195:923–934. https://doi.org/10.1007/s00359-009-0468-x

    Article  Google Scholar 

  34. Simmons JA (2017) Noise interference with echo delay discrimination in bat sonar. J Acoust Soc Am 142(5):2942–2952. https://doi.org/10.1121/1.5010159

    Article  CAS  PubMed  Google Scholar 

  35. Amichai E, Blumrosen G, Yovel Y (2015) Calling louder and longer: how bats use biosonar under severe acoustic interference from other bats. Proc Biol Sci 282:20152064. https://doi.org/10.1098/rspb.2015.2064

    Article  PubMed  PubMed Central  Google Scholar 

  36. Luo J, Goerlitz HR, Brumm H, Wiegrebe L (2015) Linking the sender to the receiver: vocal adjustments by bats to maintain signal detection in noise. Sci Rep 5:18556. https://doi.org/10.1038/srep18556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ryan AF, Kujawa SG, Hammill T, Le Prell C, Kil J (2016) Temporary and permanent noise-induced threshold shifts: a review of basic and clinical observations. Otol Neurotol 37(8):e271–e275. https://doi.org/10.1097/MAO.0000000000001071

    Article  PubMed  PubMed Central  Google Scholar 

  38. Southall BL, Bowles AE, Ellison WT, Finneran JJ, Gentry RL, Greene CR Jr, Kastak D, Ketten DR, Miller JH, Nachtigall PE, Richardson WJ, Thomas JA, Tyack PL (2007) Marine mammal noise exposure criteria: initial scientific recommendations. Aquat Mamm 33(4):411–521. https://doi.org/10.1578/AM.33.4.2007.411

    Article  Google Scholar 

  39. Heffner HE, Koay G, Heffner RS (2008) Comparison of behavioral and auditory brainstem response measures of threshold shift in rats exposed to loud sound. J Acoust Soc Am 124(2):1093–1104. https://doi.org/10.1121/1.2949518

    Article  PubMed  PubMed Central  Google Scholar 

  40. Simmons AM, Hom KN, Warnecke M, Simmons JA (2016) Broadband noise exposure does not affect hearing sensitivity in big brown bats (Eptesicus fuscus). J Exp Biol 219(7):1031–1040. https://doi.org/10.1242/jeb.135319

    Article  PubMed  Google Scholar 

  41. Simmons AM, Hom KN, Simmons JA (2017) Big brown bats (Eptesicus fuscus) maintain hearing sensitivity after exposure to intense band-limited noise. J Acoust Soc Am 141(3):1481–1489. https://doi.org/10.1121/1.4976820

    Article  PubMed  Google Scholar 

  42. McFadden SL, Simmons AM, Erbe C, Thomas JA (2022) Behavioral and physiological audiometric methods for animals. In: Erbe C, Thomas JA (eds) Exploring animal behavior through sounds. Vol. I, Methods. Springer Nature Cham Switzerland and ASA Press, pp 355–388. https://doi.org/10.1007/978-3-030-97540-1

    Chapter  Google Scholar 

  43. Finneran JJ (2015) Noise-induced hearing loss in marine mammals: a review of temporary threshold shift studies from 1996 to 2015. J Acoust Soc Am 138(3):1702–1726. https://doi.org/10.1121/1.4927418

    Article  PubMed  Google Scholar 

  44. Hom KN, Linnenschmidt M, Simmons AM, Simmons JA (2016) Echolocation behavior in big brown bats is not impaired after intense broadband noise exposures. J Exp Biol 219(20):3253–3260. https://doi.org/10.1242/jeb.143578

    Article  PubMed  Google Scholar 

  45. Simmons AM, Ertman A, Hom KN, Simmons JA (2018) Big brown bats (Eptesicus fuscus) successfully navigate through clutter after exposure to intense band-limited sound. Sci Rep 8:13555. https://doi.org/10.1038/s41598-018-31872-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fry RN, Tuninetti A, Simmons JA, Simmons AM (2024) Manipulating environmental clutter reveals dynamic active sensing strategies in big brown bats. Anim Behav Cognit 1:61–78. https://doi.org/10.26451/abc.11.01.04.2024

    Article  Google Scholar 

  47. Gorga MP (1999) Predicting auditory sensitivity from auditory brainstem response measurements. Semin Hear 20:29–43. https://doi.org/10.1055/s-0028-1089910

    Article  Google Scholar 

  48. Stapells DR (2000) Threshold estimation by the tone-evoked auditory brainstem response: a literature meta-analysis. J Speech Lang Path Audiol 24(2):74–83. https://cjslpa.ca/files/2000_JSLPA_Vol_24/No_02_33-92/Stapells_JSLPA_2000.pdf

  49. Finneran JJ, Houser DS (2006) Comparison of in-air evoked potential and underwater behavioral hearing thresholds in four bottlenose dolphins, Tursiops truncatus. J Acoust Soc Am 119:3181–3192. https://doi.org/10.1121/1.2180208

    Article  PubMed  Google Scholar 

  50. Simmons AM, Boku S, Riquimaroux H, Simmons JA (2015) Auditory brainstem responses of Japanese house bats (Pipistrellus abramus) after exposure to high level broadband noise. J Acoust Soc Am 138:2430–2437. https://doi.org/10.1121/1.4931901

    Article  CAS  PubMed  Google Scholar 

  51. Liu Z, Chen P, Li YY, Li MW, Liu Q, Pan WL, Xu DM, Bai J, Zhang LB, Tang J, Shi P (2021) Cochlear hair cells of echolocating bats are immune to intense noise. J Genet Genom 48:984–993. https://doi.org/10.1016/j.jgg.2021.06.007

    Article  CAS  Google Scholar 

  52. Wever EG, Vernon JA (1961) The protective mechanisms of the bat’s ear. Ann Otol Rhino Laryn 70:5–17. https://doi.org/10.1177/000348946107000101

    Article  CAS  Google Scholar 

  53. Suga N, Jen PH (1975) Peripheral control of acoustic signals in the auditory system of echolocating bats. J Exp Biol 62:277–311. https://doi.org/10.1242/jeb.62.2.277

    Article  CAS  PubMed  Google Scholar 

  54. Jen PH, Suga N (1976) Coordinated activities of middle-ear and laryngeal muscles in echolocating bats. Science 191:950–952. https://doi.org/10.1126/science.1251206

    Article  CAS  PubMed  Google Scholar 

  55. Kick SA, Simmons JA (1984) Automatic gain control in the bat’s sonar receiver and the neuroethology of echolocation. J Neurosci 4(11):2725–2737. https://doi.org/10.1523/jneurosci.04-11-02725.1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Henson OW Jr (1965) The activity and function of the middle ear muscles in echolocating bats. J Physiol Lond 180:871–887. https://doi.org/10.1113/jphysiol.1965.sp007737

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pollak G, Henson OW Jr (1973) Specialized functional aspects of the middle ear muscles in the bat, Chilonycteris parnellii. J Comp Physiol 84:167–174. https://doi.org/10.1007/BF00697604

    Article  Google Scholar 

  58. Surlykke A, Jakobsen L, Kalko EKV, Page RA (2013) Echolocation intensity and directionality of perching and flying fringe-lipped bats, Trachops cirrhosus (Phyllostomidae). Front Physiol 4. https://doi.org/10.3389/fphys.2013.00143

  59. Tougaard J, Breedholm K, Madsen PT (2022) Thresholds for noise induced hearing loss in harbor porpoises and phocid seals. J Acoust Soc Am 151:4252–4263. https://doi.org/10.1121/10.0011560

    Article  PubMed  Google Scholar 

  60. Weinberg MM, Retta NA, Schrode KM, Screven LA, Peterson JL, Moss CF, Sterbing S, Lauer AM (2021) Deafness in an auditory specialist, the big brown bat (Eptesicus fuscus). Hear Res 412:108377. https://doi.org/10.1016/j.heares.2021.108377

    Article  PubMed  Google Scholar 

  61. Edge ASB, Chen Z-Y (2008) Hair cell regeneration. Curr Opin Neurobiol 18:377–382. https://doi.org/10.1016/j.conb.2008.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tarnovsky YC, Taiber S, Nissan Y, Boonman A, Assaf Y, Wilkinson GS, Avraham KB, Yovel Y (2023) Bats experience age-related hearing loss (presbycusis). Life Sci Alliance 6(6):e202201847. https://doi.org/10.26508/lsa.202201847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Office of Naval Research, N00014-17-1-2736, James A. Simmons and Andrea M. Simmons.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Megela Simmons.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simmons, A.M., Simmons, J.A. Echolocating Bats Have Evolved Decreased Susceptibility to Noise-Induced Temporary Hearing Losses. JARO (2024). https://doi.org/10.1007/s10162-024-00941-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10162-024-00941-6

Keywords

Navigation