Skip to main content

How Noise Affects Bats and What It Reveals About Their Biosonar Systems

  • Chapter
  • First Online:
50 Years of Bat Research

Abstract

Echolocating bats use sounds for both perceiving their surroundings and social communication, which makes bats vulnerable to environmental and anthropogenic noise. Whether a particular noise source affects bats depends upon the acoustic properties of the noise and those of the bat’s pulses as well as whether the bat is roosting, commuting or foraging. This chapter reviews some of the key discoveries on this topic that have emerged since the first North American Society of Bat Research (NASBR) meeting 50 years ago. A variety of different experimental approaches focused on noise have synergistically advanced the study of bat biosonar and acoustic communication. Psychoacoustic studies used noise stimuli to probe mechanistic questions about how the bat’s brain processes and interprets echoes. Behavioral studies examined the long-term effects of intense noise on bat hearing, revealing that bats were surprisingly resistant to noise-induced hearing deficits at noise levels that cause hearing loss in other mammals. Lab and field studies have explored how bats respond to noise, focusing especially on behaviors that appear to successfully mitigate its negative effects. Field research has investigated the ecological consequences of both natural and anthropogenic noise, identifying the significant threats of noise pollution for bat populations. Collectively, these studies provide a cohesive framework for understanding the evolution of bat biosonar while also identifying key issues for ensuring their conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Airapet’yants ES, Konstantinov AI (1973) Echolocation in animals. Israel Program for Scientific Translations, Jerusalem. (Original in Russian (1970) Echolokatsia v prirode. Akademiya Nauk SSSR, Leningrad)

    Google Scholar 

  • Amichai E, Blumrosen G, Yovel Y (2015) Calling louder and longer: how bats use biosonar under severe acoustic interference from other bats. Proc Biol Sci 282:20152064

    PubMed  PubMed Central  Google Scholar 

  • Bates ME, Stamper SA, Simmons JA (2008) Jamming avoidance response of big brown bats in target detection. J Exp Biol 211:106–113

    Article  PubMed  Google Scholar 

  • Bennett VJ, Zurcher AA (2013) When corridors collide: road-related disturbance in commuting bats. J Wildl Manag 77:93–101

    Article  Google Scholar 

  • Brumm H, Slabbekoorn H (2005) Acoustic communication in noise. Adv Study Behav 35:151–209

    Article  Google Scholar 

  • Bunkley JP, McClure CJW, Kleist NJ, Francis CD, Barber JR (2015) Anthropogenic noise alters bat activity levels and echolocation calls. Global Ecol Conserv 3:62–71

    Article  Google Scholar 

  • Clare EL, Adams AM, Maya-Simoes AZ, Eger JL, Hebert PD, Fenton MB (2013) Diversification and reproductive isolation: cryptic species in the only New World high-duty cycle bat, Pteronotus parnellii. BMC Evol Biol 13:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Cvikel N, Egert Berg K, Levin E, Hurme E, Borissov I, Boonman A, Amichai E, Yovel Y (2015) Bats aggregate to improve prey search but might be impaired when their density becomes too high. Curr Biol 25:206–211

    Article  CAS  PubMed  Google Scholar 

  • Fenton MB, Grinnell AD, Popper AN (eds) (2016) Bat bioacoustics. Springer, New York. 304 pp

    Google Scholar 

  • Gillam EH, Ulanovsky N, McCracken GF (2007) Rapid jamming avoidance in biosonar. Proc Biol Sci 274:651–660

    PubMed  Google Scholar 

  • Gotze S, Koblitz JC, Denzinger A, Schnitzler HU (2016) No evidence for spectral jamming avoidance in echolocation behavior of foraging pipistrelle bats. Sci Rep-Uk 6:30978

    Article  CAS  Google Scholar 

  • Griffin DR (1958) Listening in the dark: the acoustic orientiation of bats and men. Yale University Press, New Haven

    Google Scholar 

  • Griffin DR, Grinnell AD (1958) Ability of bats to discriminate echoes from louder noise. Science 128:145–147

    Article  CAS  PubMed  Google Scholar 

  • Griffin DR, McCue JJG, Grinnell AD (1963) The resistance of bats to jamming. J Exp Zool 152:229–250

    Article  Google Scholar 

  • Grinnell AD (1963a) The neurophysiology of audition in bats: intensity and frequency parameteres. J Physiol 167:38–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grinnell AD (1963b) The neurophysiology of audition in bats: directional localization and binaural interaction. J Physiol 167:97–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grinnell AD, Gould E, Fenton MB (2016) A history of the discovery of echolocation. In: Fenton MB, Grinnell AD, Popper AN (eds) Bat bioacoustics. Springer, New York, pp 1–24

    Google Scholar 

  • Hage SR, Jiang T, Berquist SW, Feng J, Metzner W (2013) Ambient noise induces independent shifts in call frequency and amplitude within the Lombard effect in echolocating bats. Proc Natl Acad Sci U S A 110:4063–4068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hase K, Miyamoto T, Kobayasi KI, Hiryu S (2016) Rapid frequency control of sonar sounds by the FM bat, Miniopterus fuliginosus, in response to spectral overlap. Behav Process 128:126–133

    Article  Google Scholar 

  • Hase K, Kadoya Y, Maitani Y, Miyamoto T, Kobayasi KI, Hiryu S (2018) Bats enhance their call identities to solve the cocktail party problem. Commun Biol 1(1):1–8

    Article  Google Scholar 

  • Hom KN, Linnenschmidt M, Simmons JA, Simmons AM (2016) Echolocation behavior in big brown bats is not impaired after intense broadband noise exposures. J Exp Biol 219:3253–3260

    PubMed  Google Scholar 

  • Kingston T, Lara MC, Jones G, Akbar Z, Kunz TH, Schneider CJ (2001) Acoustic divergence in two cryptic Hipposideros species: a role for social selection? Proc Biol Sci 268:1381–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayasi KI, Hage SR, Berquist S, Feng J, Zhang S, Metzner W (2012) Behavioural and neurobiological implications of linear and non-linear features in larynx phonations of horseshoe bats. Nat Commun 3:1184

    Article  PubMed  CAS  Google Scholar 

  • Kossl M, Mayer F, Frank G, Faulstich M, Russell IJ (1999) Evolutionary adaptations of cochlear function in Jamaican mormoopid bats. J Comp Physiol A 185:217–228

    Article  CAS  PubMed  Google Scholar 

  • Lombard E (1911) Le signe de l’élévation de la voix. Annales des Maladies de l’Oreille et du Larynx 37:101–119

    Google Scholar 

  • Luo JH, Goerlitz HR, Brumm H, Wiegrebe L (2015a) Linking the sender to the receiver: vocal adjustments by bats to maintain signal detection in noise. Sci Rep-Uk 5:18556

    Article  CAS  Google Scholar 

  • Luo J, Siemers BM, Koselj K (2015b) How anthropogenic noise affects foraging. Glob Chang Biol 21:3278–3289

    Article  PubMed  Google Scholar 

  • Mackey RL, Barclay RMR (1989) The influence of physical clutter and noise on the activity of bats over water. Can J Zool 67:1167–1170

    Article  Google Scholar 

  • Masters WM, Raver KAS (1996) The degradation of distance discrimination in big brown bats (Eptesicus fuscus) caused by different interference signals. J Comp Physiol A 179:703–713

    Article  CAS  PubMed  Google Scholar 

  • Neuweiler G (2000) Biology of bats. Oxford Univ. Press, Oxford, UK

    Google Scholar 

  • Rydell J, Miller LA, Jensen ME (1999) Echolocation constraints of Daubenton’s bat foraging over water. Funct Ecol 13:247–255

    Article  Google Scholar 

  • Sanderson MI, Neretti N, Intrator N, Simmons JA (2003) Evaluation of an auditory model for echo delay accuracy in wideband biosonar. J Acoust Soc Am 114:1648–1659

    Article  PubMed  Google Scholar 

  • Schaub A, Ostwald J, Siemers BM (2008) Foraging bats avoid noise. J Exp Biol 211:3174–3180

    Article  PubMed  Google Scholar 

  • Simmons JA (1973a) Adaptive responses of bat echolocation to acoustic interference. North American Symposium on Bat Research, New Orleans

    Google Scholar 

  • Simmons JA (1973b) The resolution of target range by echolocating bats. J Acoust Soc Am 54:157–173

    Article  CAS  PubMed  Google Scholar 

  • Simmons JA (1993) Evidence for perception of fine echo delay and phase by the FM bat, Eptesicus fuscus. J Comp Physiol A 172:533–547

    Article  CAS  PubMed  Google Scholar 

  • Simmons JA (2017) Noise interference with echo delay discrimination in bat biosonar. J Acoust Soc Am 142:2942

    Article  CAS  PubMed  Google Scholar 

  • Simmons JA, Ferragamo M, Moss CF, Stevenson SB, Altes RA (1990) Discrimination of jittered sonar echoes by the echolocating bat, Eptesicus fuscus: the shape of target images in echolocation. J Comp Physiol A 167:589–616

    Article  CAS  PubMed  Google Scholar 

  • Simmons AM, Hom KN, Warnecke M, Simmons JA (2016) Broadband noise exposure does not affect hearing sensitivity in big brown bats (Eptesicus fuscus). J Exp Biol 219:1031–1040

    Article  PubMed  Google Scholar 

  • Simmons AM, Hom KN, Simmons JA (2017) Big brown bats (Eptesicus fuscus) maintain hearing sensitivity after exposure to intense band-limited noise. J Acoust Soc Am 141(3):1481–1489

    Article  PubMed  Google Scholar 

  • Simmons AM, Ertman A, Hom KN, Simmons JA (2018) Big brown bats (Eptesicus fuscus) successfully navigate through clutter after exposure to intense band-limited sound. Sci Rep 8(1):13555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smotherman MS (2007) Sensory feedback control of mammalian vocalizations. Behav Brain Res 182:315–326

    Article  PubMed  PubMed Central  Google Scholar 

  • Smotherman M, Guillen-Servent A (2008) Doppler-shift compensation behavior by Wagner’s mustached bat, Pteronotus personatus. J Acoust Soc Am 123:4331–4339

    Article  PubMed  PubMed Central  Google Scholar 

  • Stilz W-P, Schnitzler H-U (2012) Estimation of the acoustic range of bat echolocation for extended targets. J Acoust Soc Am 132(3):1765–1775

    Article  PubMed  Google Scholar 

  • Surlykke A, Nachtigall PE, Fay RR, Popper AN (eds) (2014) Biosonar. Springer, New York, p 304

    Google Scholar 

  • Tressler J, Smotherman MS (2009) Context-dependent effects of noise on echolocation pulse characteristics in free-tailed bats. J Comp Physiol A 195:923–934

    Article  Google Scholar 

  • Tressler J, Schwartz C, Wellman P, Hughes S, Smotherman M (2011) Regulation of bat echolocation pulse acoustics by striatal dopamine. J Exp Biol 214:3238–3247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulanovsky N, Fenton MB, Tsoar A, Korine C (2004) Dynamics of jamming avoidance in echolocating bats. Proc Biol Sci 271:1467–1475

    Article  PubMed  PubMed Central  Google Scholar 

  • Woodward PM (1953) Probability and information theory, with applications to radar. Pergamon Press, New York

    Google Scholar 

Download references

Acknowledgments

Preparation of this chapter was undertaken as part of a survey of biosonar research supported by Office of Naval Research MURI grant N00014-17-1-2736, for which the authors are co-principal investigators.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Smotherman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 North American Society for Bat Research (NASBR)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smotherman, M.S., Simmons, A.M., Simmons, J.A. (2021). How Noise Affects Bats and What It Reveals About Their Biosonar Systems. In: Lim, B.K., et al. 50 Years of Bat Research. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-54727-1_4

Download citation

Publish with us

Policies and ethics