Skip to main content

Advertisement

Log in

Differential Activation of Canal and Otolith Afferents by Acoustic Tone Bursts in Rats

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

A Correction to this article was published on 22 April 2022

This article has been updated

Abstract

Vestibular evoked myogenic potentials (VEMPs) are routinely used to test otolith function, but which specific vestibular afferent neurons and central circuits are activated by auditory frequency VEMP stimuli remains unclear. To examine this question, we analyzed the sensitivity of individual vestibular afferents in adult Sprague–Dawley rats to tone bursts delivered at 9 frequencies (125–4000 Hz) and 3 intensity levels (60, 70, 80 dB SL re: acoustic brainstem response (ABR) threshold). Afferent neuron tone sensitivity was quantified by the cumulative probability of evoking a spike (CPE). Based on a threshold CPE of 0.1, acoustic stimuli in the present study evoked responses in 78.2 % (390/499) of otolith afferent neurons vs. 48.4 % (431/891) of canal afferent neurons. Organ-specific vestibular inputs to the central nervous system in response to tone bursts differ based on intensity and frequency content of the stimulus. At frequencies below 500 Hz, tone bursts primarily activated both otolith afferents, even at the highest intensity tested (80 dB SL re ABR threshold). At 1500 Hz, however, tone bursts activated the canal and otolith afferents at the moderate and high intensities tested (70, 80 dB SL), but activated only otolith afferents at the low intensity tested (60 dB SL). Within an end organ, diversity of sensitivity between individual afferent neurons correlated with spontaneous discharge rate and regularity. Examination of inner ear fluid mechanics in silico suggests that the frequency response and preferential activation of the otolith organs likely arise from inner ear fluid motion trapped near the oval and round windows. These results provide insight into understanding the mechanisms of sound activation of the vestibular system and developing novel discriminative VEMP testing protocols and interpretative guidelines in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

adopted from Marlinski et al. (2004)

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

References

  • Ashford A, Huang J, Zhang C, Wei W, Mustain W, Eby T, Zhu H, Zhou W (2016) The cervical vestibular-evoked myogenic potentials (cVEMPs) recorded along the sternocleidomastoid muscles during head rotation and flexion in normal human subjects. J Assoc Res Otolaryngol 17(4):303–311. https://doi.org/10.1007/s10162-016-0566-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Baird RA, Desmadryl GL, Femandez C, Goldberg JM (1988) The vestibular nerve of the chinchilla. II. Relation between afferent response properties and peripheral innervation patterns in the semicircular canals. J Neurophysiol 60:182–203

  • Broussard DM, Lisberger SG (1992) Vestibular input to brain stem neurons that participate in motor learning in the primate vestibuloocular reflex. J Neurophysiol 68:1906–1909

    Article  CAS  Google Scholar 

  • Carey JP, Hirvonen TP, Hullar TE, Minor LB (2004) Acoustic responses of vestibular afferents in a model of superior canal dehiscence. Otol Neurotol 25:345–352

    Article  Google Scholar 

  • Chen T, Huang J, Yu Y, Tang X, Zhang C, Xu Y, Arteaga A, Allison J, Mustain W, Donald MC, Rappai T, Zhang M, Zhou W, Zhu H (2021) Sound-evoked responses in the vestibulo-ocular reflex pathways of rats. Front Neurosci 15:741571. https://doi.org/10.3389/fnins.2021.74157

  • Colebatch JG (2001) Vestibular evoked potentials. Curr Opin in Neurol 14:21–26

    Article  CAS  Google Scholar 

  • Colebatch JG (2010) Sound conclusion? Clin Neurophysiol 121:124–126

    Article  Google Scholar 

  • Colebatch JG, Halmagyi GM (1992) Vestibular evoked potentials in human neck muscles before and after unilateral vestibular deafferentation. Neurology 42(8):1635–6

    Article  CAS  Google Scholar 

  • Contini D, Holstein GR, Art JJ (2020) Synaptic cleft microenvironment influences potassium permeation and synaptic transmission in hair cells surrounded by calyx afferents in the turtle. J Physiol 598(4):853–889. https://doi.org/10.1113/JP278680

    Article  CAS  PubMed  Google Scholar 

  • Cullen KE, Rey CG, Guitton D, Galiana HL (1996) The use of system identification techniques in the analysis of oculomotor burst neuron spike train dynamics. J Comput Neurosci 3:347–368. https://doi.org/10.1007/BF00161093

    Article  CAS  PubMed  Google Scholar 

  • Curthoys IS (2010) A critical review of the neurophysiological evidence underlying clinical vestibular testing using sound, vibration and galvanic stimuli. Clin Neurophysiol 121:132–144

    Article  Google Scholar 

  • Curthoys IS, Burgess AM, Goonetilleke SC (2019) Phase-locking of irregular guinea pig primary vestibular afferents to high frequency (>250 Hz) sound and vibration. Hear Res 373:59–70. https://doi.org/10.1016/j.heares.2018.12.009

    Article  CAS  PubMed  Google Scholar 

  • Curthoys IS, MacDougall HG, Vidal PP, Waele CD (2017) Sustained and transient vestibular systems: a physiological basis for interpreting vestibular function. Front Neurol 8:117

    Article  Google Scholar 

  • Curthoys IS, Vulovic V (2011) Vestibular primary afferent responses to sound and vibration in the guinea pig. Exp Brain Res 210:347–52. https://doi.org/10.1007/s00221-010-2499-5

    Article  PubMed  Google Scholar 

  • Curthoys IS, Vulovic V, Burgess AM, Sokolic L, Goonetilleke SC (2016) The response of guinea pig primary utricular and saccular irregular neurons to bone-conducted vibration (BCV) and air-conducted sound (ACS). Hear Res 331:131–143. https://doi.org/10.1016/j.heares.2015.10.019

    Article  PubMed  Google Scholar 

  • Dlugaiczyk J, Gensberger KD, Straka H (2019) Galvanic vestibular stimulation: from basic concepts to clinical applications. J Neurophysiol 121(6):2237–2255. https://doi.org/10.1152/jn.00035.2019

    Article  CAS  PubMed  Google Scholar 

  • Eatock RA, Songer JE (2011) Vestibular hair cells and afferents: two channels for head motion signals. Ann Rev Neurosci 34:501–534

    Article  CAS  Google Scholar 

  • Goldberg JM, Fernandez C (1975) Responses of peripheral vestibular neurons to angular and linear accelerations in the squirrel monkey. Acta Otolaryngol 80(1–6):101–110

    Article  CAS  Google Scholar 

  • Goldberg JM, Smith CE, Fernandez C (1984) Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey. J Neurophysiol 51(6):1236–1256

    Article  CAS  Google Scholar 

  • Goldberg JM, Wilson VJ, Cullen KE, Angelaki DE, Broussard DM, Buttnwe-Ennever JA, Fukushima K, Minor LB (2012) Clinical manifestation of peripheral vestibular dysfunction. pp 495–524. In the vestibular system: a sixth sense. Oxford University Press

  • Grieser BJ, Kleiser L, Obrist D (2016) Identifying mechanisms behind the Tullio phenomenon: a computational study based on first principles. J Assoc Res Otolaryngol 17(2):103–118

    Article  Google Scholar 

  • Iversen MM (2021) Simple acoustic finite element model of rat inner ear: Input deck. Repository https://github.com/martaiversen/RatInnerEar_SimpleFEMAcousticModel

  • Iversen MM, Rabbitt RD (2017) Wave mechanics of the vestibular semicircular canals. Biophys J 113(5):1133–1149. https://doi.org/10.1016/j.bpj.2017.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iversen MM, Zhu H, Zhou W, Della Santina CC, Carey JP, Rabbitt RD (2018) Sound abnormally stimulates the vestibular system in canal dehiscence syndrome by generating pathological fluid-mechanical waves. Scientific Reports volume 8(10257)

  • Jombik P, Bahyl V (2005) Short latency responses in the averaged electrooculogram elicited by vibrational impulse stimuli applied upon the skull: could they reflect function of the vestibulo-ocular reflex? J Neurol Neurosurg Psychiatry 76:222–228

    Article  CAS  Google Scholar 

  • Lasker DM, Han GC, Park HJ, Minor LB (2008) Rotational responses of vestibular–nerve afferents innervating the semicircular canals in the C57BL/6 mouse. J Assoc Res Otolaryngol 9(3):334–348

    Article  Google Scholar 

  • Lin MY, Timmer FCA, Oriel BS, Zhou G, Guinan JJ, Kujawa SG, Herrmann BS, Merchant SN, Rauch SD (2006) Vestibular evoked myogenic potentials (VEMP) can detect asymptomatic saccular hydrops. Laryngoscope 116(6):987–992

    Article  Google Scholar 

  • Liu S, Angelaki DE (2009) Vestibular signals in macaque extrastriate visual cortex are functionally appropriate for heading perception. J Neurosci 28:8936–8945. https://doi.org/10.1523/JNEUROSCI.1607-09.2009

    Article  CAS  Google Scholar 

  • Lysakowski A, Goldberg JM (1997) A regional ultrastructural analysis of the cellular and synaptic architecture in the chinchilla cristae ampullares. J Comp Neurol 389(3):419–443

    Article  CAS  Google Scholar 

  • Marlinski V, Plotnik M, Goldberg JM (2004) Efferent actions in the chinchilla vestibular labyrinth. J Assoc Res Otolaryngol 5(2):126–143. https://doi.org/10.1007/s10162-003-4029-7

    Article  PubMed  PubMed Central  Google Scholar 

  • McCue MP, Guinan JJ (1994a) Acoustically responsive fibers in the vestibular nerve of the cat. J Neurosci 14:6058–6070

    Article  CAS  Google Scholar 

  • McCue MP, Guinan JJ (1994b) Influence of efferent stimulation on acoustically responsive vestibular afferents in the cat. J Neurosci 14:6071–6083

    Article  CAS  Google Scholar 

  • McCue MP, Guinan JJ (1995) Spontaneous activity and frequency selectivity of acoustically responsive vestibular afferents in the cat. J Neurophysiol 74:1563–1572

    Article  CAS  Google Scholar 

  • McCue MP, Guinan JJ (1997) Sound-evoked activity in primary afferent neurons of a mammalian vestibular system. Am J Otol 18:355–360

    CAS  PubMed  Google Scholar 

  • Minor LB, D Solomon D, Zinreich JS, Zee DS (1998) Sound- and/or pressure-induced vertigo due to bone dehiscence of the superior semicircular canal. Arch Otolaryngol Head Neck Surg 124(3):249–258

  • Money K, Bonen L, Weaver RS (1971) Physical properties of fluids and structures of vestibular apparatus of the pigeon. Am J Physiol 220(1):140–147

    Article  CAS  Google Scholar 

  • Murofushi T, Curthoys IS (1997) Physiological and anatomical study of click-sensitive primary vestibular afferents in the guinea pig. Acta Otolaryngol 117:66–72

    Article  CAS  Google Scholar 

  • Murofushi T, Curthoys IS, Topple AN, Colebatch JG, Halmagyi GM (1995) Responses of guinea pig primary vestibular neurons to clicks. Exp Brain Res 103:174–178

    Article  CAS  Google Scholar 

  • Parker DE, Tubbs RL, Littlefield VM (1978) Visual-field displacements in human beings evoked by acoustical transients. J Acoust Soc Am 63(6):1912–1918

    Article  CAS  Google Scholar 

  • Rabbitt RD, Boyle R, Highstein SM (1995) Mechanical indentation of the vestibular labyrinth and its relationship to head rotation in the toadfish, Opsanus tau. J Neurophysiol 73:2237–2260

    Article  CAS  Google Scholar 

  • Rabbitt RD, Brichta AM, Tabatabaee H, Boutros PJ, Ahn J, Della Santina CC, Poppi LA, Lim R (2016) Heat pulse excitability of vestibular hair cells and afferent neurons. J Neurophysiol 116(2):825–843. https://doi.org/10.1152/jn.00110.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajguru SM, Richter CP, Matic AI, Holstein GR, Highstein SM, Dittami GM, Richard D, Rabbitt RD (2011) Infrared photostimulation of the crista ampullaris. J Physiol 589(6):1283–1294

  • Rosengren SM, Welgampola MS, Colebatch JG (2010) Vestibular evoked myogenic potentials: past, present and future. Clin Neurophysiol 121:636–651

    Article  CAS  Google Scholar 

  • Simpson GV, Knight RT, Brailowsky S, Prospero-Garcia O, Scabini D (1985) Altered peripheral and brainstem auditory function in aged rats. Brain Res 348:28–35

    Article  CAS  Google Scholar 

  • Steer RW, Yao TL, Young LR , Meiry JL (1967) Physical properties of labyrinthine fluids and quantification of the phenomenon of caloric stimulation. Third symposium on the role of the vestibular organs in space exploration. Pensacola, FL Jan 23–27

  • Todd NPM, Cody FW, Banks JR (2000) A saccular origin of frequency tuning in myogenic vestibular evoked potentials?: implications for human responses to loud sounds. Hear Res 141(1–2):180–188. https://doi.org/10.1016/s0378-5955(99)00222-1

    Article  CAS  PubMed  Google Scholar 

  • Todd NPM, Rosengren SM, Aw ST, Colebatch JG (2007) Ocular vestibular evoked myogenic potentials (OVEMPs) produced by air- and bone-conducted sound. Clin Neurophysiol 118:381–390

    Article  Google Scholar 

  • Tullio P (1929) Das Ohr und die Entstehung der Sprache und Schrift. Urban & Schwarzenberg, Berlin

    Google Scholar 

  • Uchino Y, Kushiro K (2011) Differences between otolith- and semicircular canal-activated neural circuitry in the vestibular system. Neurosci Res 71(4):315–327

    Article  Google Scholar 

  • Uchino Y, Sasaki M, Sato H, Bai R, Kawamoto E (2005) Otolith and canal integration on single vestibular neurons in cats. Exp Brain Res 164:271–285

    Article  CAS  Google Scholar 

  • Ward BK, Roberts DC, Otero-Millan J, Zee DS (2019) A decade of magnetic vestibular stimulation: from serendipity to physics to the clinic. J Neurophysiol 121(6):2013–2019. https://doi.org/10.1152/jn.00873.2018

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Jeffcoat B, Mustain W, Xu Y, Eby T, Zhu H, Tang X, Zhou W (2013) Vestibular-evoked myogenic potentials (VEMP) recorded from different sites of the sternocleidomastoid muscles in normal human subjects. J Assoc Res Otolaryngol 14(1):37–47

    Article  Google Scholar 

  • Wilson VJ, Schor RH (1999) The neural substrate of the vestibulocollic reflex: what needs to be learned? Exp Brain Res 129:483–493

    Article  CAS  Google Scholar 

  • Wit HP, Bleeker JD, Mulder HH (1984) Responses of pigeon vestibular nerve fibers to sound and vibration with audio frequencies. J Acoust Soc Am 75(1):202–208

    Article  CAS  Google Scholar 

  • Xu Y, Simpson I, Tang X, Zhou W (2009) Acoustic clicks activate both the canal and otolith vestibulo-ocular reflex pathways in behaving monkeys. J Assoc Res Otolaryngol 10(4):569–577

    Article  Google Scholar 

  • Young ED, Fernandez C, Goldberg JM (1977) Responses of squirrel monkey vestibular neurons to audio-frequency sound and head vibration. Acta Otolaryngol 84:352–360

    Article  CAS  Google Scholar 

  • Zhang CM, Huang J, Xu Y, Mustain W, Zhu H, Zhou W (2016) Low frequency tone burst evokes a new positive peak (P2) in cervical VEMPs between the traditional P1–N1. ARO 39:286

    Google Scholar 

  • Zhu H, Tang X, Wei W, Maklad A, Mustain W, Rabbitt R, Highstein S, Allison J, Zhou W (2014) Input-output functions of vestibular afferent responses to air-conducted clicks in rats. JARO 15:73–86

    Article  Google Scholar 

  • Zhu H, Tang X, Wei W, Xu Y, Mustain W, Zhou W (2011) Click-evoked responses in vestibular afferents in rats. J Neurophysiol 106(2):754–763

    Article  Google Scholar 

  • Zhou W, Weldon P, Tang B, King WM (2003) Rapid motor learning in the translational vestibulo-ocular reflex. J Neurosci 23(10):4288–4298. https://doi.org/10.1523/JNEUROSCI.23-10-04288.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou W, Xu Y, Simpson I, Cai YD (2007) Multiplicative computation in the vestibulo-ocular reflex (VOR). J Neurophysiol 97:2780–2789

    Article  Google Scholar 

Download references

Funding

This study was supported by NIH R01DC012060 (HZ), NIH R01DC008585 (WZ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wu Zhou or Hong Zhu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Wu Zhou and Hong Zhu share senior authorship of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Tang, X., Xu, Y. et al. Differential Activation of Canal and Otolith Afferents by Acoustic Tone Bursts in Rats. JARO 23, 435–453 (2022). https://doi.org/10.1007/s10162-022-00839-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-022-00839-1

Keywords

Navigation