Skip to main content

Reflection-Source Emissions Evoked with Clicks and Frequency Sweeps: Comparisons Across Levels

Abstract

According to coherent reflection theory, otoacoustic emissions (OAE) evoked with clicks (clicked-evoked, CE) or tones (stimulus frequency, SF) originate via the same mechanism. We test this hypothesis in gerbils by investigating the similarity of CE- and SFOAEs across a wide range of stimulus levels. The results show that OAE transfer functions measured in response to clicks and sweeps have nearly equivalent time–frequency characteristics, particularly at low stimulus levels. At high stimulus levels, the two OAE types are more dissimilar, reflecting the different dynamic properties of the evoking stimulus. At mid to high stimulus levels, time–frequency analysis reveals contributions from at least two OAE source components of varying latencies. Interference between these components explains the emergence of strong spectral microstructure. Time–frequency filtering based on mean basilar-membrane (BM) group delays (τBM) shows that late-latency OAE components (latency ~ 1.6τBM) dominate at low stimulus intensities and exhibit highly compressive growth with increasing stimulus intensity. In contrast, early-latency OAE components (~ 0.7τBM) are small at low stimulus levels but can come to dominate the overall response at higher intensities. Although the properties of long-latency OAEs are consistent with an origin via coherent reflection near the peak of the traveling wave, the generation place and/or mechanisms responsible for the early-latency OAE components warrant further investigation. Because their delay remains in constant proportion to τBM across sound intensity, long-latency OAEs, whether evoked with tones or clicks, can be used to predict characteristics of cochlear processing, such as the sharpness of frequency tuning, even at high stimulus levels.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Abdala C, Guardia YC, Shera CA (2018) Swept-tone stimulus-frequency otoacoustic emissions: Normative data and methodological considerations. J Acoust Soc Am 143:181

    PubMed  PubMed Central  Google Scholar 

  2. Altoè A, Shera CA (2020) Nonlinear cochlear mechanics without direct vibration-amplification feedback. Phys Rev Research 2:013218

  3. Bennett CL, Ozdamar O (2010) Swept-tone transient-evoked otoacoustic emissions. J Acoust Soc Am 128:1833–1844

    PubMed  Google Scholar 

  4. Charaziak KK, Siegel JH (2015a) Low-frequency tone-pip-evoked otoacoustic emissions originate over a broad cochlear region in chinchillas. In: Mechanics of hearing: protein to perception (Karavitaki KD, Corey DP, eds), p 090016

  5. Charaziak KK, Siegel JH (2015b) Tuning of SFOAEs evoked by low-frequency tones is not compatible with localized emission generation. J Assoc Res Otolaryngol 16:317–329

    PubMed  PubMed Central  Google Scholar 

  6. Charaziak KK, Shera CA (2017) Compensating for ear-canal acoustics when measuring otoacoustic emissions. J Acoust Soc Am 141:515–531

    PubMed  PubMed Central  Google Scholar 

  7. Charaziak KK, Dong W, Shera CA (2018) Temporal interactions in basilar-membrane and otoacoustic-emission responses to pairs of clicks. Assoc Res Otolaryngol, Abstr: PS-465 41:296

  8. Charaziak KK, Altoè A, Dong W, Shera CA (2019) Ringing in basilar-membrane responses to clicks - Effect on the tonotopic map. Assoc Res Otolaryngol, Abstr: PS-174 42:99

  9. Charaziak KK, Altoé A, Oghalai J, Shera C (2020a) Measuring cochlear impulse responses using frequency sweeps. Assoc Res Otolaryngol, Abstr: PS-197 43

  10. Charaziak KK, Dong W, Altoe A, Shera CA (2020b) Asymmetry and microstructure of temporal-suppression patterns in basilar-membrane responses to clicks: Relation to tonal suppression and traveling-wave dispersion. J Assoc Res Otolaryngol 21:151–170

    PubMed  PubMed Central  Google Scholar 

  11. Choi YS, Lee SY, Parham K, Neely ST, Kim DO (2008) Stimulus-frequency otoacoustic emission: Measurements in humans and simulations with an active cochlear model. J Acoust Soc Am 123:2651–2669

    PubMed  PubMed Central  Google Scholar 

  12. Clark CW, Marler P, Beeman K (1987) Quantitative analysis of animal vocal phonology: An application to swamp sparrow song. Ethology 76:101–115

    Google Scholar 

  13. Cooper NP, Vavakou A, van der Heijden M (2018) Vibration hotspots reveal longitudinal funneling of sound-evoked motion in the mammalian cochlea. Nat Commun 9:3054

    PubMed  PubMed Central  Google Scholar 

  14. de Boer E (1997) Connecting frequency selectivity and nonlinear models of the cochlea. Aud Neurosci 3:377–388

    Google Scholar 

  15. de Boer E, Nuttall AL (1997) The mechanical waveform of the basilar membrane. I. Frequency modulations (“glides”) in impulse responses and cross-correlation functions. J Acoust Soc Am 101:3583–3592

    PubMed  Google Scholar 

  16. Dong W, Olson ES (2006) Middle ear forward and reverse transmission in gerbil. J Neurophys 95:2951–2961

    Google Scholar 

  17. Ellison JC, Keefe DH (2005) Audiometric predictions using stimulus-frequency otoacoustic emissions and middle ear measurements. Ear Hear 26:487–503

    PubMed  PubMed Central  Google Scholar 

  18. Eustaquio-Martin A, Lopez-Poveda EA (2011) Isoresponse versus isoinput estimates of cochlear filter tuning. J Assoc Res Otolaryngol 12:281–299

    PubMed  Google Scholar 

  19. Fallah E, Strimbu CE, Olson ES (2019) Nonlinearity and amplification in cochlear responses to single and multi-tone stimuli. Hear Res 377:271–281

    PubMed  PubMed Central  Google Scholar 

  20. Farina A (2000) Simultaneous measurement of impulse response and distortion with a swept-sine technique. In: 108th AES Convention. Paris

  21. Goodman SS, Mertes IB, Scheperle RA (2011) Delays and growth rates of multiple TEOAE components. In: What fire is in mine ears: progress in auditory biomechanics (Shera CA, Olson ES, eds), pp 279–285. Williamstown, MA: Melville, New York

  22. Goodman SS, Fitzpatrick DF, Ellison JC, Jesteadt W, Keefe DH (2009) High-frequency click-evoked otoacoustic emissions and behavioral thresholds in humans. J Acoust Soc Am 125:1014–1032

    PubMed  PubMed Central  Google Scholar 

  23. Guinan JJ (1990) Changes in stimulus frequency otoacoustic emissions produced by two-tone suppression and efferent stimulation in cats. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) The mechanics and biophysics of hearing. Springer-Verlag, Madison, pp 170–177

    Google Scholar 

  24. Huang S, Olson ES (2011) Auditory nerve excitation via a non-traveling wave mode of basilar membrane motion. J Assoc Res Otolaryngol 12:559–575

    PubMed  PubMed Central  Google Scholar 

  25. Kalluri R, Shera CA (2007a) Near equivalence of human click-evoked and stimulus-frequency otoacoustic emissions. J Acoust Soc Am 121:2097–2110

    PubMed  Google Scholar 

  26. Kalluri R, Shera CA (2007b) Comparing stimulus-frequency otoacoustic emissions measured by compression, suppression, and spectral smoothing. J Acoust Soc Am 122:3562–3575

    PubMed  Google Scholar 

  27. Keefe DH (2012) Moments of click-evoked otoacoustic emissions in human ears: group delay and spread, instantaneous frequency and bandwidth. J Acoust Soc Am 132:3319–3350

    PubMed  PubMed Central  Google Scholar 

  28. Keefe DH, Feeney MP, Hunter LL, Fitzpatrick DF (2016) Comparisons of transient evoked otoacoustic emissions using chirp and click stimuli. J Acoust Soc Am 140:1949–1973

    PubMed  PubMed Central  Google Scholar 

  29. Kemp DT, Chum RA (1980) Observations on the generator mechanism of stimulus frequency acoustic emissions–two tone suppression. In: deBoer E, Viergever MA (eds) Psychophysical, physiological and behavioral studies in hearing. Delft University Press, Delft, pp 34–41

    Google Scholar 

  30. Lewis JD, Goodman SS (2014) The effect of stimulus bandwidth on the nonlinear-derived tone-burst-evoked otoacoustic emission. J Assoc Res Otolaryngol 15:915–931

    PubMed  PubMed Central  Google Scholar 

  31. Lewis JD, Goodman SS (2015) Basal contributions to short-latency transient-evoked otoacoustic emission components. J Assoc Res Otolaryngol 16:29–45

    PubMed  Google Scholar 

  32. Long GR, Talmadge CL, Lee J (2008) Measuring distortion product otoacoustic emissions using continuously sweeping primaries. J Acoust Soc Am 124:1613–1626

    PubMed  Google Scholar 

  33. Moleti A, Sisto R (2020) Does the “reticular lamina nonlinearity” contribute to the basal DPOAE source? J Assoc Res Otolaryngol 21:463–473

    PubMed  Google Scholar 

  34. Moleti A, Longo F, Sisto R (2012a) Time-frequency domain filtering of evoked otoacoustic emissions. J Acoust Soc Am 132:2455–2467

    PubMed  Google Scholar 

  35. Moleti A, Botti T, Sisto R (2012b) Transient-evoked otoacoustic emission generators in a nonlinear cochlea. J Acoust Soc Am 131:2891–2903

    PubMed  Google Scholar 

  36. Moleti A, Sisto R, Lucertini M (2014) Experimental evidence for the basal generation place of the short-latency transient-evoked otoacoustic emissions. J Acoust Soc Am 135:2862–2872

    CAS  PubMed  Google Scholar 

  37. Moleti A, Al-Maamury AM, Bertaccini D, Botti T, Sisto R (2013) Generation place of the long- and short-latency components of transient-evoked otoacoustic emissions in a nonlinear cochlear model. J Acoust Soc Am 133:4098–4108

    PubMed  Google Scholar 

  38. Muller M (1996) The cochlear place-frequency map of the adult and developing Mongolian gerbil. Hear Res 94:148–156

    CAS  PubMed  Google Scholar 

  39. Novak A, Lotton P, Simon L (2015) Synchronized swept-sine: Theory, application, and implementation. J Audio Eng Soc 63:786–798

    Google Scholar 

  40. Novak A, Simon L, Kadlec F, Lotton P (2010) Nonlinear system identification using exponential swept-sine signal. IEEE Trans Instrum Meas 59:2220–2229

    Google Scholar 

  41. Ohlemiller KK, Echteler SM (1990) Functional correlates of characteristic frequency in single cochlear nerve fibers of the Mongolian gerbil. J Comp Physiol A 167:329–338

    CAS  PubMed  Google Scholar 

  42. Rabiner LR, Schafer RW (2007) Introduction to digital speech processing: Now Publishers.

  43. Recio-Spinoso A, Narayan SS, Ruggero MA (2009) Basilar membrane responses to noise at a basal site of the chinchilla cochlea: quasi-linear filtering. J Assoc Res Otolaryngol 10:471–484

    PubMed  PubMed Central  Google Scholar 

  44. Recio A, Rhode WS (2000) Basilar membrane responses to broadband stimuli. J Acoust Soc Am 108:2281–2298

    CAS  PubMed  Google Scholar 

  45. Recio A, Rich NC, Narayan SS, Ruggero MA (1998) Basilar-membrane responses to clicks at the base of the chinchilla cochlea. J Acoust Soc Am 103:1972–1989

    CAS  PubMed  Google Scholar 

  46. Ren T, Nuttall AL (2001) Basilar membrane vibration in the basal turn of the sensitive gerbil cochlea. Hear Res 151:48–60

    CAS  PubMed  Google Scholar 

  47. Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305–1352

    CAS  PubMed  Google Scholar 

  48. Schairer KS, Ellison JC, Fitzpatrick D, Keefe DH (2006) Use of stimulus-frequency otoacoustic emission latency and level to investigate cochlear mechanics in human ears. J Acoust Soc Am 120:901–914

    PubMed  Google Scholar 

  49. Schmiedt RA (1982) Boundaries of two-tone rate suppression of cochlear-nerve activity. Hear Res 7:335–351

    CAS  PubMed  Google Scholar 

  50. Schmiedt RA (1989) Spontaneous rates, thresholds and tuning of auditory-nerve fibers in the gerbil: Comparisons to cat data. Hear Res 42:23–35

    CAS  PubMed  Google Scholar 

  51. Shera CA, Zweig G (1993) Noninvasive measurement of the cochlear traveling-wave ratio. J Acoust Soc Am 93:3333–3352

    CAS  PubMed  Google Scholar 

  52. Shera CA, Guinan JJ Jr (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: A taxonomy for mammalian OAEs. J Acoust Soc Am 105:782–798

    CAS  PubMed  Google Scholar 

  53. Shera CA, Guinan JJ Jr (2003) Stimulus-frequency-emission group delay: A test of coherent reflection filtering and a window on cochlear tuning. J Acoust Soc Am 113:2762–2772

    PubMed  Google Scholar 

  54. Shera CA, Guinan JJ (2008) Mechanisms of mammalian otoacoustic emission. In: Active processes and otoacoustic emissions in hearing (Manley GA, Fay RR, Popper AN, eds), pp 305–342. New York, NY: Springer New York

  55. Shera CA, Bergevin C (2012) Obtaining reliable phase-gradient delays from otoacoustic emission data. J Acoust Soc Am 132:927–943

    PubMed  PubMed Central  Google Scholar 

  56. Shera CA, Cooper NP (2013) Basilar-membrane interference patterns from multiple internal reflection of cochlear traveling waves. J Acoust Soc Am 133:2224–2239

    PubMed  PubMed Central  Google Scholar 

  57. Shera CA, Guinan JJ Jr, Oxenham AJ (2002) Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proc Natl Acad Sci USA 99:3318–3323

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Shera CA, Tubis A, Talmadge CL (2008) Testing coherent reflection in chinchilla: Auditory-nerve responses predict stimulus-frequency emissions. J Acoust Soc Am 124:381–395

    PubMed  PubMed Central  Google Scholar 

  59. Shera CA, Guinan JJ Jr, Oxenham AJ (2010) Otoacoustic estimation of cochlear tuning: Validation in the chinchilla. J Assoc Res Otolaryngol 11:343–365

    PubMed  PubMed Central  Google Scholar 

  60. Siegel JH (2007) Calibration of otoacoustic emission probes. In: Robinette MS, Glattke TJ (eds) Otoacoustic emissions: clinical applications, Third, Edition. Thieme, New York, pp 403–429

    Google Scholar 

  61. Siegel JH, Charaziak K, Cheatham MA (2011) Transient‐ and tone‐evoked otoacoustic emissions in three species. In: What fire is in mine ears: progress in auditory biomechanics (Shera C, Olson E, eds), pp 307–314

  62. Siegel JH, Cerka AJ, Recio-Spinoso A, Temchin AN, van Dijk P, Ruggero MA (2005) Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering. J Acoust Soc Am 118:2434–2443

    PubMed  Google Scholar 

  63. Sisto R, Sanjust F, Moleti A (2013) Input/output functions of different-latency components of transient-evoked and stimulus-frequency otoacoustic emissions. J Acoust Soc Am 133:2240–2253

    PubMed  Google Scholar 

  64. Sisto R, Moleti A, Shera CA (2015) On the spatial distribution of the reflection sources of different latency components of otoacoustic emissions. J Acoust Soc Am 137:768–776

    PubMed  PubMed Central  Google Scholar 

  65. Talmadge CL, Tubis A, Long GR, Piskorski P (1998) Modeling otoacoustic emission and hearing threshold fine structures. J Acoust Soc Am 104:1517–1543

    CAS  PubMed  Google Scholar 

  66. Talmadge CL, Tubis A, Long GR, Tong C (2000) Modeling the combined effects of basilar membrane nonlinearity and roughness on stimulus frequency otoacoustic emission fine structure. J Acoust Soc Am 108:2911–2932

    CAS  PubMed  Google Scholar 

  67. Tognola G, Grandori F, Ravazzani P (1997) Time-frequency distributions of click-evoked otoacoustic emissions. Hear Res 106:112–122

    CAS  PubMed  Google Scholar 

  68. Vencovský V, Vetešník A, Gummer AW (2020) Nonlinear reflection as a cause of the short-latency component in stimulus-frequency otoacoustic emissions simulated by the methods of compression and suppression. J Acoust Soc Am 147:3992

    PubMed  Google Scholar 

  69. Versteegh CPC, van der Heijden M (2012) Basilar membrane responses to tones and tone complexes: Nonlinear effects of stimulus intensity. J Assoc Res Otolaryngol 13:785–798

    PubMed  PubMed Central  Google Scholar 

  70. Withnell RH, Yates GK (1998) Enhancement of the transient-evoked otoacoustic emission produced by the addition of a pure tone in the guinea pig. J Acoust Soc Am 104:344–349

    CAS  PubMed  Google Scholar 

  71. Withnell RH, McKinley S (2005) Delay dependence for the origin of the nonlinear derived transient evoked otoacoustic emission. J Acoust Soc Am 117:281–291

    PubMed  Google Scholar 

  72. Yates GK, Withnell RH (1999) The role of intermodulation distortion in transient-evoked otoacoustic emissions. Hear Res 136:49–64

    CAS  PubMed  Google Scholar 

  73. Zweig G, Shera CA (1995) The origin of periodicity in the spectrum of evoked otoacoustic emissions. J Acoust Soc Am 98:2018–2047

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Alessandro Altoè for many helpful discussions.

Funding

This study was financially supported by grants K99 DC016906-01A1 (KKC) and R01 DC003687 (CAS) from the NIH.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karolina K. Charaziak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Charaziak, K.K., Shera, C.A. Reflection-Source Emissions Evoked with Clicks and Frequency Sweeps: Comparisons Across Levels. JARO 22, 641–658 (2021). https://doi.org/10.1007/s10162-021-00813-3

Download citation

Keywords

  • Otoacoustic emissions
  • Reflection-source
  • Gerbil
  • Cochlea
  • Cochlear tuning