Skip to main content
Log in

Tuning of SFOAEs Evoked by Low-Frequency Tones Is Not Compatible with Localized Emission Generation

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Stimulus-frequency otoacoustic emissions (SFOAEs) appear to be well suited for assessing frequency selectivity because, at least on theoretical grounds, they originate over a restricted region of the cochlea near the characteristic place of the evoking tone. In support of this view, we previously found good agreement between SFOAE suppression tuning curves (SF-STCs) and a control measure of frequency selectivity (compound action potential suppression tuning curves (CAP-STC)) for frequencies above 3 kHz in chinchillas. For lower frequencies, however, SF-STCs and were over five times broader than the CAP-STCs and demonstrated more high-pass rather than narrow band-pass filter characteristics. Here, we test the hypothesis that the broad tuning of low-frequency SF-STCs is because emissions originate over a broad region of the cochlea extending basal to the characteristic place of the evoking tone. We removed contributions of the hypothesized basally located SFOAE sources by either pre-suppressing them with a high-frequency interference tone (IT; 4.2, 6.2, or 9.2 kHz at 75 dB sound pressure level (SPL)) or by inducing acoustic trauma at high frequencies (exposures to 8, 5, and lastly 3-kHz tones at 110–115 dB SPL). The 1-kHz SF-STCs and CAP-STCs were measured for baseline, IT present and following the acoustic trauma conditions in anesthetized chinchillas. The IT and acoustic trauma affected SF-STCs in an almost indistinguishable way. The SF-STCs changed progressively from a broad high-pass to narrow band-pass shape as the frequency of the IT was lowered and for subsequent exposures to lower-frequency tones. Both results were in agreement with the “basal sources” hypothesis. In contrast, CAP-STCs were not changed by either manipulation, indicating that neither the IT nor acoustic trauma affected the 1-kHz characteristic place. Thus, unlike CAPs, SFOAEs cannot be considered as a place-specific measure of cochlear function at low frequencies, at least in chinchillas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  • Arnold DJ, Lonsbury-Martin BL, Martin GK (1999) High-frequency hearing influences lower-frequency distortion-product otoacoustic emissions. Arch Otolaryngol Head Neck Surg 125:215–222

    Article  CAS  PubMed  Google Scholar 

  • Avan P, Bonfils P, Loth D, Narcy P, Trotoux J (1991) Quantitative assessment of human cochlear function by evoked otoacoustic emissions. Hear Res 52:99–112

    Article  CAS  PubMed  Google Scholar 

  • Avan P, Bonfils P, Loth D, Wit HP (1993) Temporal patterns of transient-evoked otoacoustic emissions in normal and impaired cochleae. Hear Res 70:109–120

    Article  CAS  PubMed  Google Scholar 

  • Avan P, Bonfils P, Loth D, Elbez M, Erminy M (1995) Transient-evoked otoacoustic emissions and high-frequency acoustic trauma in the guinea pig. J Acoust Soc Am 97:3012–3020

    Article  CAS  PubMed  Google Scholar 

  • Avan P, Elbez M, Bonfils P (1997) Click-evoked otoacoustic emissions and the influence of high-frequency hearing losses in humans. J Acoust Soc Am 101:2771–2777

    Article  CAS  PubMed  Google Scholar 

  • Baiduc R, Charaziak KK, Siegel JH (2012) Spatial distribution of stimulus-frequency otoacoustic emissions generators in humans. Assoc Res Otolaryngol Abstr 398 35

  • Bland JM, Altman DG (1995) Calculating correlation coefficients with repeated observations: part 1—correlation within subjects. BMJ 310:446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brass D, Kemp DT (1993) Suppression of stimulus frequency otoacoustic emissions. J Acoust Soc Am 93:920–939

    Article  CAS  PubMed  Google Scholar 

  • Charaziak KK, Siegel JH (2014) Estimating cochlear frequency selectivity with stimulus-frequency otoacoustic emissions in chinchillas. J Assoc Res Otolaryngol 15:883–896

    Article  PubMed  Google Scholar 

  • Charaziak KK, Souza P, Siegel JH (2013) Stimulus-frequency otoacoustic emission suppression tuning in humans: comparison to behavioral tuning. J Assoc Res Otolaryngol 14:843–862

    Article  PubMed Central  PubMed  Google Scholar 

  • Cheatham MA, Naik K, Dallos P (2011a) Using the cochlear microphonic as a tool to evaluate cochlear function in mouse models of hearing. J Assoc Res Otolaryngol 12:113–125

    Article  PubMed Central  PubMed  Google Scholar 

  • Cheatham MA, Katz ED, Charaziak KK, Dallos P, Siegel JH (2011b) Using stimulus frequency emissions to characterize cochlear function in mice. AIP Conf Proc 1403:383–388

    Article  CAS  Google Scholar 

  • Choi YS, Lee SY, Parham K, Neely ST, Kim DO (2008) Stimulus-frequency otoacoustic emission: measurements in humans and simulations with an active cochlear model. J Acoust Soc Am 123:2651–2669

    Article  PubMed Central  PubMed  Google Scholar 

  • Clark WW (1991) Recent studies of temporary threshold shift (TTS) and permanent threshold shift (PTS) in animals. J Acoust Soc Am 90:155–163

    Article  CAS  PubMed  Google Scholar 

  • Clark WW, Kim DO, Zurek PM, Bohne BA (1984) Spontaneous otoacoustic emissions in chinchilla ear canals: correlation with histopathology and suppression by external tones. Hear Res 16:299–314

    Article  CAS  PubMed  Google Scholar 

  • Dallos P, Cheatham MA (1976a) Compound action potential (AP) tuning curves. J Acoust Soc Am 59:591–597

    Article  CAS  PubMed  Google Scholar 

  • Dallos P, Cheatham MA (1976b) Production of cochlear potentials by inner and outer hair cells. J Acoust Soc Am 60:510–512

    Article  CAS  PubMed  Google Scholar 

  • Davis RI, Ahroon WA, Hamernik RP (1989) The relation among hearing loss, sensory cell loss and tuning characteristics in the chinchilla. Hear Res 41:1–14

    Article  CAS  PubMed  Google Scholar 

  • Dhar S, Rogers A, Abdala C (2011) Breaking away: violation of distortion emission phase-frequency invariance at low frequencies. J Acoust Soc Am 129:3115–3122

    Article  PubMed Central  PubMed  Google Scholar 

  • Dreisbach LE, Torre P 3rd, Kramer SJ, Kopke R, Jackson R, Balough B (2008) Influence of ultrahigh-frequency hearing thresholds on distortion-product otoacoustic emission levels at conventional frequencies. J Am Acad Audiol 19:325–336

    Article  PubMed  Google Scholar 

  • Ellison JC, Keefe DH (2005) Audiometric predictions using stimulus-frequency otoacoustic emissions and middle ear measurements. Ear Hear 26:487–503

    Article  PubMed Central  PubMed  Google Scholar 

  • Evans EF (1972) The frequency response and other properties of single fibres in the guinea-pig cochlear nerve. J Physiol 226:263–287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Geisler CD, Yates GK, Patuzzi RB, Johnstone BM (1990) Saturation of outer hair cell receptor currents causes two-tone suppression. Hear Res 44:241–256

    Article  CAS  PubMed  Google Scholar 

  • Goodman SS, Mertes IB, Scheperle RA (2011) Delays and growth rates of multiple TEOAE components. In: Shera CA, Olson ES (eds) What fire is in mine ears: progress in auditory biomechanics. AIP Conf. Proc, pp 279–285

  • Gorga MP, Neely ST, Kopun J, Tan H (2011) Distortion-product otoacoustic emission suppression tuning curves in humans. J Acoust Soc Am 129:817–827

    Article  PubMed Central  PubMed  Google Scholar 

  • Guinan JJ (1990) Changes in stimulus frequency otoacoustic emissions produced by two-tone suppression and efferent stimulation in cats. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) The mechanics and biophysics of hearing. Springer, Madison, pp 170–177

    Chapter  Google Scholar 

  • Harding GW, Bohne BA, Ahmad M (2002) DPOAE level shifts and ABR threshold shifts compared to detailed analysis of histopathological damage from noise. Hear Res 174:158–171

    Article  PubMed  Google Scholar 

  • He W, Porsov E, Kemp D, Nuttall AL, Ren T (2012) The group delay and suppression pattern of the cochlear microphonic potential recorded at the round window. PLoS One 7:e34356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heitmann J, Waldmann B, Schnitzler H-U, Plinkert PK, Zenner H-P (1998) Suppression of distortion product otoacoustic emissions (DPOAE) near 2f1−f2 removes DP-gram fine structure—evidence for a secondary generator. J Acoust Soc Am 103:1527–1531

    Article  Google Scholar 

  • Jedrzejczak WW, Kochanek K, Trzaskowski B, Pilka E, Skarzynski PH, Skarzynski H (2012) Tone-burst and click-evoked otoacoustic emissions in subjects with hearing loss above 0.25, 0.5, and 1 kHz. Ear Hear 33:757–767

    Article  PubMed  Google Scholar 

  • Kalluri R, Shera CA (2007) Comparing stimulus-frequency otoacoustic emissions measured by compression, suppression, and spectral smoothing. J Acoust Soc Am 122:3562–3575

    Article  PubMed  Google Scholar 

  • Keefe DH, Ellison JC, Fitzpatrick DF, Gorga MP (2008) Two-tone suppression of stimulus frequency otoacoustic emissions. J Acoust Soc Am 123:1479–1494

    Article  PubMed Central  PubMed  Google Scholar 

  • Kemp DT (2007) Otoacoustic Emissions: the basics, the science and the future potential. In: Robinette MS, Glattke TJ (eds) Otoacoustic emissions: clinical applications. Theime, New York, pp 7–42

    Google Scholar 

  • Kemp DT, Chum RA (1980) Observations on the generator mechanism of stimulus frequency acoustic emissions–two tone suppression. In: deBoer E, Viergever MA (eds) Psychophysical, physiological and behavioral studies in hearing. Delft University Press, Delft, pp 34–41

    Chapter  Google Scholar 

  • Killan EC, Lutman ME, Montelpare WJ, Thyer NJ (2012) A mechanism for simultaneous suppression of tone burst-evoked otoacoustic emissions. Hear Res 285:58–64

    Article  PubMed  Google Scholar 

  • Lewis J, Goodman S (2014) The origin of short-latency transient-evoked otoacoustic emissions. J Assoc Res Otolaryngol 37:72, Abstr: 126

    Google Scholar 

  • Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63:442–455

    Article  CAS  PubMed  Google Scholar 

  • Liberman MC, Dodds LW (1987) Acute ultrastructural changes in acoustic trauma: serial-section reconstruction of stereocilia and cuticular plates. Hear Res 26:45–64

    Article  CAS  PubMed  Google Scholar 

  • Martin GK, Stagner BB, Jassir D, Telischi FF, Lonsbury-Martin BL (1999) Suppression and enhancement of distortion-product otoacoustic emissions by interference tones above f(2). I. Basic findings in rabbits. Hear Res 136:105–123

    Article  CAS  PubMed  Google Scholar 

  • Martin GK, Villasuso EI, Stagner BB, Lonsbury-Martin BL (2003) Suppression and enhancement of distortion-product otoacoustic emissions by interference tones above f(2). II. Findings in humans. Hear Res 177:111–122

    Article  PubMed  Google Scholar 

  • Martin GK, Stagner BB, Fahey PF, Lonsbury-Martin BL (2009) Steep and shallow phase gradient distortion product otoacoustic emissions arising basal to the primary tones. J Acoust Soc Am 125:El85–El92

    PubMed  Google Scholar 

  • Martin GK, Stagner BB, Lonsbury-Martin BL (2010) Evidence for basal distortion-product otoacoustic emission components. J Acoust Soc Am 127:2955–2972

    Article  PubMed Central  PubMed  Google Scholar 

  • Martin GK, Stagner BB, Chung YS, Lonsbury-Martin BL (2011) Characterizing distortion-product otoacoustic emission components across four species. J Acoust Soc Am 129:3090–3103

    Article  PubMed Central  PubMed  Google Scholar 

  • Mertes IB, Goodman SS (2013) Short-latency transient-evoked otoacoustic emissions as predictors of hearing status and thresholdsa). J Acoust Soc Am 134:2127–2135

    Article  PubMed  Google Scholar 

  • Mills DM (2000) Frequency responses of two- and three-tone distortion product otoacoustic emissions in Mongolian gerbils. J Acoust Soc Am 107:2586–2602

    Article  CAS  PubMed  Google Scholar 

  • Moleti A, Al-Maamury AM, Bertaccini D, Botti T, Sisto R (2013) Generation place of the long- and short-latency components of transient-evoked otoacoustic emissions in a nonlinear cochlear model. J Acoust Soc Am 133:4098–4108

    Article  PubMed  Google Scholar 

  • Moleti A, Sisto R, Lucertini M (2014) Experimental evidence for the basal generation place of the short-latency transient-evoked otoacoustic emissions. J Acoust Soc Am 135:2862–2872

    Article  CAS  PubMed  Google Scholar 

  • Muller M, Hoidis S, Smolders JW (2010) A physiological frequency-position map of the chinchilla cochlea. Hear Res 268:184–193

    Article  PubMed  Google Scholar 

  • Murnane OD, Kelly JK (2003) The effects of high-frequency hearing loss on low-frequency components of the click-evoked otoacoustic emission. J Am Acad Audiol 14:525–533

    Article  PubMed  Google Scholar 

  • Neely S, Liu Z (2011) EMAV: otoacoustic emission averager. In: Technical Memorandum. Omaha, NE: Boys Town National Research Hospital

  • Nordmann AS, Bohne BA, Harding GW (2000) Histopathological differences between temporary and permanent threshold shift. Hear Res 139:13–30

    Article  CAS  PubMed  Google Scholar 

  • Özdamar Ö, Dallos P (1978) Synchronous responses of the primary auditory fibers to the onset of tone burst and their relation to compound action potentials. Brain Res 155:169–175

    Article  PubMed  Google Scholar 

  • Pickles JO, Osborne MP, Comis SD (1987) Vulnerability of tip links between stereocilia to acoustic trauma in the guinea pig. Hear Res 25:173–183

    Article  CAS  PubMed  Google Scholar 

  • Puel JL, Bobbin RP, Fallon M (1988) The active process is affected first by intense sound exposure. Hear Res 37:53–63

    Article  CAS  PubMed  Google Scholar 

  • Rasetshwane DM, Argenyi M, Neely ST, Kopun JG, Gorga MP (2013) Latency of tone-burst-evoked auditory brain stem responses and otoacoustic emissions: level, frequency, and rise-time effects. J Acoust Soc Am 133:2803–2817

    Article  PubMed Central  PubMed  Google Scholar 

  • Rhode WS (2007) Mutual suppression in the 6 kHz region of sensitive chinchilla cochleae. J Acoust Soc Am 121:2805–2818

    Article  PubMed  Google Scholar 

  • Ruggero MA, Temchin AN (2005) Unexceptional sharpness of frequency tuning in the human cochlea. Proc Natl Acad Sci U S A 102:18614–18619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ruggero MA, Rich NC, Recio A (1996) The effect of intense acoustic stimulation on basilar-membrane vibrations. Audit Neurosci 2:329–345

    Google Scholar 

  • Shera CA, Guinan JJ Jr (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105:782–798

    Article  CAS  PubMed  Google Scholar 

  • Shera CA, Guinan JJ Jr (2003) Stimulus-frequency-emission group delay: a test of coherent reflection filtering and a window on cochlear tuning. J Acoust Soc Am 113:2762–2772

    Article  PubMed  Google Scholar 

  • Shera CA, Tubis A, Talmadge CL, Guinan JJ Jr (2004) The dual effect of “suppressor” tones on stimulus-frequency otoacoustic emissions. J Assoc Res Otolaryngol 27:538

    Google Scholar 

  • Shera CA, Guinan JJ Jr, Oxenham AJ (2010) Otoacoustic estimation of cochlear tuning: validation in the chinchilla. J Assoc Res Otolaryngol 11:343–365

    Article  PubMed Central  PubMed  Google Scholar 

  • Siegel JH (2006) The biophysical origin of otoacoustic emissions. In: Nuttall AL, Ren T, Gillespe P, Grosh K, de Boer E (eds) Auditory mechanisms: processes and models. World Scientific, Singapore, pp 361–368

    Chapter  Google Scholar 

  • Siegel JH (2007) Calibration of otoacoustic emission probes. In: Robinette MS, Glattke TJ (eds) Otoacoustic emissions: clinical applications, 3rd edn. Thieme, New York, pp 403–429

    Google Scholar 

  • Siegel JH (2008) Species differences in low-level otoacoustic emissions may be explained by “hot regions” in the cochlea. J Acoust Soc Am 123:3852

    Article  Google Scholar 

  • Siegel JH, Cerka AJ, Recio-Spinoso A, Temchin AN, van Dijk P, Ruggero MA (2005) Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering. J Acoust Soc Am 118:2434–2443

    Article  PubMed  Google Scholar 

  • Sisto R, Sanjust F, Moleti A (2013) Input/output functions of different-latency components of transient-evoked and stimulus-frequency otoacoustic emissions. J Acoust Soc Am 133:2240–2253

    Article  PubMed  Google Scholar 

  • Songer JE, Rosowski JJ (2005) The effect of superior canal dehiscence on cochlear potential in response to air-conducted stimuli in chinchilla. Hear Res 210:53–62

    Article  PubMed Central  PubMed  Google Scholar 

  • Souter M (1995) Stimulus frequency otoacoustic emissions from guinea pig and human subjects. Hear Res 90:1–11

    Article  CAS  PubMed  Google Scholar 

  • Sutton GJ (1985) Suppression effects in the spectrum of evoked oto-acoustic emissions. Acustica 58:57–63

    Google Scholar 

  • Taberner AM, Liberman MC (2005) Response properties of single auditory nerve fibers in the mouse. J Neurophysiol 93:557–569

    Article  PubMed  Google Scholar 

  • Teas DC, Eldredge DH, Davis H (1962) Cochlear responses to acoustic transients: an interpretation of whole-nerve action potentials. J Acoust Soc Am 34:1438–1459

    Article  Google Scholar 

  • Temchin AN, Rich NC, Ruggero MA (2008) Threshold tuning curves of chinchilla auditory-nerve fibers. I. Dependence on characteristic frequency and relation to the magnitudes of cochlear vibrations. J Neurophysiol 100:2889–2898

    Article  PubMed Central  PubMed  Google Scholar 

  • Temchin AN, Recio-Spinoso A, Cai H, Ruggero MA (2012) Traveling waves on the organ of Corti of the chinchilla cochlea: spatial trajectories of inner hair cell depolarization inferred from responses of auditory-nerve fibers. J Neurosci 32:10522–10529

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thorne PR, Duncan CE, Gavin JB (1986) The pathogenesis of stereocilia abnormalities in acoustic trauma. Hear Res 21:41–49

    Article  CAS  PubMed  Google Scholar 

  • Withnell RH, Yates GK, Kirk DL (2000) Changes to low-frequency components of the TEOAE following acoustic trauma to the base of the cochlea. Hear Res 139:1–12

    Article  CAS  PubMed  Google Scholar 

  • Yates GK, Withnell RH (1999) The role of intermodulation distortion in transient-evoked otoacoustic emissions. Hear Res 136:49–64

    Article  CAS  PubMed  Google Scholar 

  • Zettner EM, Folsom RC (2003) Transient emission suppression tuning curve attributes in relation to psychoacoustic threshold. J Acoust Soc Am 113:2031–2041

    Article  PubMed  Google Scholar 

  • Zurek PM, Clark WW (1981) Narrow-band acoustic-signals emitted by chinchilla ears after noise exposure. J Acoust Soc Am 70:446–450

    Article  Google Scholar 

  • Zweig G, Shera CA (1995) The origin of periodicity in the spectrum of evoked otoacoustic emissions. J Acoust Soc Am 98:2018–2047

    Article  CAS  PubMed  Google Scholar 

  • Zwicker E, Wesel J (1990) The effect of addition in suppression of delayed evoked otoacoustic emissions and in masking. Acta Acustica 70:189–196

    Google Scholar 

Download references

Acknowledgments

This study was supported by the NIH Grant DC-00419 (M. Ruggero), Northwestern University School of Communication Ignition grant, and Northwestern University. We thank Dr. Sumitrajit Dhar and Dr. Steven Zecker for statistical consultations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karolina K. Charaziak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charaziak, K.K., Siegel, J.H. Tuning of SFOAEs Evoked by Low-Frequency Tones Is Not Compatible with Localized Emission Generation. JARO 16, 317–329 (2015). https://doi.org/10.1007/s10162-015-0513-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-015-0513-0

Keywords

Navigation