Skip to main content

Cochlear Pathomorphogenesis of Incomplete Partition Type II in Slc26a4-Null Mice

Abstract

Incomplete partition type II (IP-II) is frequently identified in ears with SLC26A4 mutations. Cochleae with IP-II are generally observed to have 1½ turns; the basal turns are normally formed, and the apical turn is dilated or cystic. The objective of this study was to characterize the pathomorphogenesis of the IP-II cochlear anomaly in Slc26a4-null mice. Otic capsules were dissected from Slc26a4Δ/+ and Slc26a4Δ/Δ mice at 1 and 8 days of age and at 1 and 3 months of age. X-ray micro-computed tomography was used to image samples. We used a multiplanar view and three-dimensional reconstructed models to calculate the cochlear duct length, cochlear turn rotation angle, and modiolus tilt angle. The number of inner hair cells was counted, and the length of the cochlear duct was measured in a whole-mount preparation of the membranous labyrinth. X-ray micro-computed tomography mid-modiolar planar views demonstrated cystic apical turns in Slc26a4Δ/Δ mice resulting from the loss or deossification of the interscalar septum, which morphologically resembles IP-II in humans. Planes vertical to the modiolus showed a similar mean rotation angle between Slc26a4Δ/+ and Slc26a4Δ/Δ mice. In contrast, the mean cochlear duct length and mean number of inner hair cells in Slc26a4Δ/Δ mice were significantly smaller than in Slc26a4Δ/+ mice. In addition, there were significant differences in the mean tilt angle and mean width of the modiolus. Our analysis of Slc26a4-null mice suggests that IP-II in humans reflects loss or deossification of the interscalar septum but not a decreased number of cochlear turns.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Al-Amri SS, Kalyankar NV, Khamitkar, SD (2010) Image segmentation by using threshold techniques arXiv preprint 1005:4020. https://arxiv.org/abs/1005.4020

  2. Altmann F (1950) Histologic picture of inherited nerve deafness in man and animals. Arch Otolaryngol 51:852–890

    Article  Google Scholar 

  3. Bajin MD, Pamuk AE, Pamuk G, Ozgen B, Sennaroglu L (2018) The association between modiolar base anomalies and intraoperative cerebrospinal fluid leakage in patients with incomplete partition type-II anomaly: a classification system and presentation of 73 cases. Otol Neurotol 39:e538-e542. https://doi.org/10.1097/MAO.0000000000001871

  4. Chan BKC (2018) Data analysis using R programming. Adv Exp Med Biol 1082:47–122. https://doi.org/10.1007/978-3-319-93791-5_2

    Article  PubMed  Google Scholar 

  5. Chang YN Jaumann EA, Reichel K, Hartmann J, Oliver D, Hummer G, Joseph B, Geertsma ER. (2019) Structural basis for functional interactions in dimers of SLC26 transporters. Nat Commun 10:2032. https://doi.org/10.1038/s41467-019-10001-w

  6. Choi BY, Kim HM, Ito T, Lee KY, Li X, Monahan K, Wen Y, Wilson E, Kurima K, Saunders TL, Petralia RS, Wangemann P, Friedman TB, Griffith AJ. (2011) Mouse model of enlarged vestibular aqueducts defines temporal requirement of Slc26a4 expression for hearing acquisition. Journal Clin Invest 121:4516–4525. https://doi.org/10.1172/JCI59353

  7. Coleman B, Rickard NA, de Silva MG, Shepherd RK (2009) A protocol for cryoembedding the adult guinea pig cochlea for fluorescence immunohistology. J Neurosci Methods 176:144–151. https://doi.org/10.1016/j.jneumeth.2008.09.007

    Article  PubMed  Google Scholar 

  8. Ding X, Tian H, Wang W, Zhang D (2009) Cochlear implantation in China: review of 1,237 cases with an emphasis on complications. ORL J Otorhinolaryngol Relat Spec 71:192–195. https://doi.org/10.1159/000229297

  9. Dror AA, Politi Y, Shahin H, Lenz DR, Sossena S, Nofziger C, Fuchs H, de Angelis MH, Paulmichl M, Weiner S, Avraham KB. (2010) Calcium oxalate stone formation in the inner ear as a result of an Slc26a4 mutation. J Biol Chem 285:21724–21735. https://doi.org/10.1074/jbc.M110.120188

  10. Elfarnawany M, Alam SR, Rohani S, Zhu N, Agrawal S, Ladak H (2017) Micro-CT versus synchrotron radiation phase contrast imaging of human cochlea. J Microsc 265:349–357

    CAS  Article  Google Scholar 

  11. Everett LA, Belyantseva A, Knoben-Trauth K, Cantos R, Chen A, Thakkar SI, Hoogstraten-Miller SL, Kachar B, Wu DK, Green ED. (2001) Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum Mol Genet 10:153–161. https://doi.org/10.1093/hmg/10.2.153

  12. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Filion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R. (2012) 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30:1323–1341. https://doi.org/10.1016/j.mri.2012.05.001

  13. Fujikawa T, Petralia RS, Fitzgerald TS, Wang Y-X, Millis B,  Morgado-Diaz JA, Kitamura K, Kachar B. (2014) Localization of kainate receptors in inner and outer hair cell synapses. Hearing Res 314:20–32. https://doi.org/10.1016/j.heares.2014.05.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Gussen R (1968) Mondini type of genetically determined deafness. J Laryngol Otol 82:41–55. https://doi.org/10.1017/s002221510006847x

    CAS  Article  PubMed  Google Scholar 

  15. Honda K, Noguchi Y, Kawashima Y, Takahashi M, Nishio A, Kitamura K (2015) Ex vivo visualization of the mouse otoconial layer compared with micro-computed tomography. Otol Neurotol 36:311–317. https://doi.org/10.1097/MAO.0000000000000376

    Article  PubMed  Google Scholar 

  16. Hongjian L, Guangke W, Song M, Xiaoli D, Daoxing Z (2012) The prediction of CSF gusher in cochlear implants with inner ear abnormality. Acta Otolaryngol 132:1271–1274. https://doi.org/10.3109/00016489.2012.701328

    Article  PubMed  Google Scholar 

  17. Hvidberg-Hansen J, Jorgensen MB (1968) The inner ear in Pendred’s syndrome. Acta Otolaryngol 66:129–135

    CAS  PubMed  Google Scholar 

  18. Ito T, Choi BM, King KA, Zalewski CK, Muskett J, Chattaraj P, Shawker T, Reynolds JC, Butman JA, Brewer CC, Wangemann P, Alper SL, Griffith AJ. (2011) SLC26A4 genotypes and phenotypes associated with enlargement of the vestibular aqueduct. Cell Physiol Biochem 28:545–552. https://doi.org/10.1159/000335119

  19. Ito T, Li X, Kurima K, Choi BY, Wangemann P, Griffith AJ (2014) Slc26a4-insufficiency causes fluctuating hearing loss and stria vascularis dysfunction. Neurobiology of disease 66C:53–65. https://doi.org/10.1016/j.nbd.2014.02.002

  20. Jackler RK, Luxford WM, House WF (1987) Congenital malformations of the inner ear: a classification based on embryogenesis. Laryngoscope 97:2–14. https://doi.org/10.1002/lary.5540971301

    CAS  Article  PubMed  Google Scholar 

  21. Johnsen T, Jorgensen MB, Johnsen S (1986) Mondini cochlea in Pendred’s syndrome. A Histological Study. Acta Otolaryngol 102:239–247

    CAS  Article  Google Scholar 

  22. Jui-Cheng Y, Fu-Juay C, Shyang C (1995) A new criterion for automatic multilevel thresholding. IEEE Trans Image Process 4:370–378. https://doi.org/10.1109/83.366472

    Article  Google Scholar 

  23. Kempf HG, Tempel S, Johann K, Lenarz T (1999) Complications of cochlear implant surgery in children and adults. Laryngorhinootologie 78:529–537. https://doi.org/10.1055/s-1999-8753

  24. Kim BG, Sim NS, Kim SH, Kim UK, Kim S, Choi JY (2013) Enlarged cochlear aqueducts: a potential route for CSF gushers in patients with enlarged vestibular aqueducts. Otol Neurotol 34:1660–1665. https://doi.org/10.1097/MAO.0b013e3182a036e4

    Article  PubMed  Google Scholar 

  25. Kim HM, Wangemann P (2011) Epithelial Cell Stretching and Luminal Acidification Lead to a Retarded Development of Stria Vascularis and Deafness in Mice Lacking Pendrin. PloS One 6:e17949. https://doi.org/10.1371/journal.pone.0017949

    CAS  Article  PubMed  Google Scholar 

  26. Leung KJ, Quesnel AM, Juliano AF, Curtin HD (2016) Correlation of CT, MR, and histopathology in incomplete partition-II cochlear anomaly. Otol Neurotol 37:434–437. https://doi.org/10.1097/mao.0000000000001027

    Article  PubMed  Google Scholar 

  27. Makary C, Shin J, Caruso P, Curtin H, Merchant S (2010) A Histological Study of Scala Communis with Radiological Implications. Audiology & Neuro-Otology 15:383–393. https://doi.org/10.1159/000307345

    Article  Google Scholar 

  28. Mey K, Bille M, Caye-Thomasen P (2016) Cochlear implantation in Pendred syndrome and non-syndromic enlarged vestibular aqueduct - clinical challenges, surgical results, and complications. Acta Otolaryngol 136:1064–1068. https://doi.org/10.1080/00016489.2016.1185538

  29. Mondini C (1791) Anatomica surdi nadti sectio Die Bononiensi Scientiarunz et articltm instituto atque academic comnlentarii 7:p419–431

  30. O'Malley Jr BW, Li D, Turner DS (1995) Hearing loss and cochlear abnormalities in the congenital hypothyroid (hyt/hyt) mouse. Hearing Res 88:181–189

  31. Phelps PD (1990) Mondini and “pseudo Mondini.” Clin Otolaryngol Allied Sci 15:99–101

    CAS  Article  Google Scholar 

  32. Roesch S, Bernardinelli E, Nofziger C, Toth M, Patsch W, Rasp G, Paulmichl M, Dossena S. (2018) Functional testing of SLC26A4 variants-clinical and molecular analysis of a cohort with enlarged vestibular aqueduct from Austria. Int J Mol Sci 19. https://doi.org/10.3390/ijms19010209

  33. Roesch S, Moser G, Rasp G, Toth M (2013) CT-scans of cochlear implant patients with characteristics of Pendred syndrome. Cell Physiol Biochem 32:166–172. https://doi.org/10.1159/000356636

    CAS  Article  PubMed  Google Scholar 

  34. Royaux IE, Belyantseva IA, Wu T, Kachar B, Everett LA, Marcus DC, Green ED (2003) Localization and functional studies of pendrin in the mouse inner ear provide insight about the etiology of deafness in pendred syndrome. J Assoc Res Otolaryngol 4:394–404. https://doi.org/10.1007/s10162-002-3052-4

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schuknecht HF, Merchant SN, Nadol JB (2010) Schuknecht's pathology of the ear. 3rd edn. People's Medical Pub. House-USA, Shelton, CT

  36. Sennaroglu L (2016) Histopathology of inner ear malformations: do we have enough evidence to explain pathophysiology? Cochlear Implants Int 17:3–20. https://doi.org/10.1179/1754762815y.0000000016

    Article  PubMed  Google Scholar 

  37. Sennaroglu L, Saatci I (2002) A New Classification for Cochleovestibular Malformations. Laryngoscope 112:2230–2241. https://doi.org/10.1097/00005537-200212000-00019

    Article  PubMed  Google Scholar 

  38. Sennaroglu L, Saatci I (2004) Unpartitioned versus incompletely partitioned cochleae: radiologic differentiation. Otol Neurotol 25:520–529; discussion 529. https://doi.org/10.1097/00129492-200407000-00020

  39. Sieber D, Erfurt P, John S, Santos GRD, Schurzig D, Sorensen MS, Lenarz T (2019) The OpenEar library of 3D models of the human temporal bone based on computed tomography and micro-slicing. Sci Data 6:180297. https://doi.org/10.1038/sdata.2018.297

  40. Takeda H, Miwa T, Kim MY, Choi BY, Orita Y, Minoda R (2019) Prenatal electroporation-mediated gene transfer restores Slc26a4 knock-out mouse hearing and vestibular function. Scientific Reports 9. https://doi.org/10.1038/s41598-019-54262-3

  41. Uziel A, Pujol R, Legrand C, Legrand J (1983) Cochlear synaptogenesis in the hypothyroid rat. Dev Brain Res 7:295–301

    Article  Google Scholar 

  42. Velazquez ER, Parmar C, Jermoui M, Mak RH, van Baardwijk A, Fennessy FM, Lewis JH, De Ruysscher D, Kikinis R, Philippe L, Aerts HJWL. (2013) Volumetric CT-based segmentation of NSCLC using 3D-Slicer. Scientific Reports 3:3529. https://doi.org/10.1038/srep03529

  43. Walter JD, Sawicka M, Dutzler R (2019) Cryo-EM structures and functional characterization of murine Slc26a9 reveal mechanism of uncoupled chloride transport. Elife 8. https://doi.org/10.7554/eLife.46986

  44. Wangemann P, Kim HM, Billings S, Nakaya K, Li X, Singh R, Sharlin DS, Forrest D, Marcus DC, Fong P. (2009) Developmental delays consistent with cochlear hypothyroidism contribute to failure to develop hearing in mice lacking Slc26a4/pendrin expression. Am J Physiol Renal Physiol. 297:F1435–1447. https://doi.org/10.1152/ajprenal.00011.2009

  45. Wangemann P, Nakaya K, Wu T, Maganti RJ, Itza EM, Sanneman JD, Harbidge DG, Billings S, Marcus DC. (2007) Loss of cochlear HCO3-secretion causes deafness via endolymphatic acidification and inhibition of Ca2+ reabsorption in a Pendred syndrome mouse model. Am J Physiol Renal Physiol 292:F1345-1353. https://doi.org/10.1152/ajprenal.00487.2006

  46. Wootten CT, Backous DD, Haynes DS (2006) Management of cerebrospinal fluid leakage from cochleostomy during cochlear implant surgery. Laryngoscope 116:2055–2059. https://doi.org/10.1097/01.mlg.0000240286.43289.87

    Article  PubMed  Google Scholar 

  47. Zhu L, Kolesov I, Gao Y, Kikinis R, Tannenbaum A An effective interactive medical image segmentation method using fast growcut. In: MICCAI workshop on interactive medical image computing, 2014.

Download references

Funding

Supported by a Grant-in-Aid for Scientific Research (grant No. 17K11316, 17K11314) from the Ministry of Health, Labor, and Welfare of Japan, NIDCD intramural research fund Z01-DC-000060, and a research grant from Kao Melanin Workshop.

Author information

Affiliations

Authors

Contributions

T.I. designed the research, performed the experiments, analyzed the data, and wrote the manuscript. T.F., K.H., and A.M. performed the experiments. H.W., J.B., Y. K., and T. M. provided critical feedback. A.G. and T.T. helped guide the research, analysis, and manuscript. All of the authors read and critically reviewed the manuscript.

Corresponding author

Correspondence to Taku Ito.

Ethics declarations

Ethics Approval

All procedures involving animals were approved by the Institutional Animal Care and Use Committee of Tokyo Medical and Dental University (No. A2019-280A).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ito, T., Fujikawa, T., Honda, K. et al. Cochlear Pathomorphogenesis of Incomplete Partition Type II in Slc26a4-Null Mice. JARO 22, 681–691 (2021). https://doi.org/10.1007/s10162-021-00812-4

Download citation

Keywords

  • Slc26a4
  • Micro-CT
  • Incomplete partition type II
  • Mondini deformity
  • Modiolus