Skip to main content
Log in

Identifying Mechanisms Behind the Tullio Phenomenon: a Computational Study Based on First Principles

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Patients with superior canal dehiscence (SCD) suffer from events of dizziness and vertigo in response to sound, also known as Tullio phenomenon (TP). The present work seeks to explain the fluid-dynamical mechanisms behind TP. In accordance with the so-called third window theory, we developed a computational model for the vestibular signal pathway between stapes and SCD. It is based on first principles and accounts for fluid–structure interactions arising between endolymph, perilymph, and membranous labyrinth. The simulation results reveal a wave propagation phenomenon in the membranous canal, leading to two flow phenomena within the endolymph which are in close interaction. First, the periodic deformation of the membranous labyrinth causes oscillating endolymph flow which forces the cupula to oscillate in phase with the sound stimulus. Second, these primary oscillations of the endolymph induce a steady flow component by a phenomenon known as steady streaming. We find that this steady flow of the endolymph is typically in ampullofugal direction. This flow leads to a quasi-steady deflection of the cupula which increases until the driving forces of the steady streaming are balanced by the elastic reaction forces of the cupula, such that the cupula attains a constant deflection amplitude which lasts as long as the sound stimulus. Both response types have been observed in the literature. In a sensitivity study, we obtain an analytical fit which very well matches our simulation results in a relevant parameter range. Finally, we correlate the corresponding eye response (vestibulo-ocular reflex) with the fluid dynamics by a simplified model of lumped system constants. The results reveal a “sweet spot” for TP within the audible sound spectrum. We find that the underlying mechanisms which lead to TP originate primarily from Reynolds stresses in the fluid, which are weaker at lower sound frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15
FIG. 16
FIG. 17

Similar content being viewed by others

References

  • Aibara R, Welsh JT, Puria S, Goode RL (2001) Human middle-ear sound transfer function and cochlear input impedance. Hear Res 152(1–2):100–109

    Article  CAS  PubMed  Google Scholar 

  • Andrews DG, McIntyre ME (1978) An exact theory of nonlinear waves on a Lagrangian-mean flow. J Fluid Mech 89(4):609–646

    Article  Google Scholar 

  • Benner CF (2015) Fluid-dynamic study of sound-induced vertigo. Master thesis, Institute of Fluid Dynamics, ETH Zürich, doi:10.3929/ethz-a-010395756

  • Boluriaan S, Morris PJ (2003) Acoustic streaming: from Rayleigh to today. Int J Aeroacoust 2(3):255–292

    Article  Google Scholar 

  • Bradley C (2012) Acoustic streaming field structure. Part II. Examples that include boundary-driven flow. J Acoust Soc Am 131(1):13–23

    Article  PubMed  Google Scholar 

  • Carey JP, Minor LB, Nager GT (2000) Dehiscence or thinning of bone overlying the superior semicircular canal in a temporal bone survey. Arch Otolaryngol Head Neck Surg 126(2):137–147

    Article  CAS  PubMed  Google Scholar 

  • Carey JP, Hirvonen TP, Hullar TE, Minor LB (2004) Acoustic responses of vestibular afferents in a model of superior canal dehiscence. Otol Neurotol 25(3):345–352

    Article  PubMed  Google Scholar 

  • Chien W, Rosowski JJ, Ravicz ME, Rauch SD, Smullen J, Merchant SN (2009) Measurements of stapes velocity in live human ears. Hear Res 249(1–2):54–61

    Article  PubMed  PubMed Central  Google Scholar 

  • Cremer P, Minor L, Carey J, Della Santina C (2000) Eye movements in patients with superior canal dehiscence syndrome align with the abnormal canal. Neurology 55(12):1833–1841

    Article  CAS  PubMed  Google Scholar 

  • Curthoys IS, Oman CM (1987) Dimensions of the horizontal semicircular duct, ampulla and utricle in the human. Acta Otolaryngol 103(3–4):254–261

    Article  Google Scholar 

  • Edom E, Obrist D, Kleiser L (2014) Steady streaming in a two-dimensional box model of a passive cochlea. J Fluid Mech 753:254–278

    Article  Google Scholar 

  • Gautier F, Gilbert J, Dalmont JP, Picó Vila R (2007) Wave propagation in a fluid-filled cylindrical membrane. Acta Acust 93:333–344

    Google Scholar 

  • Gerstenberger C, Wolter FE (2013) Numerical simulation of acoustic streaming within the cochlea. J Comput Acoust 21(4:1350019):1–37

    Google Scholar 

  • Grieser B (2015) Fluid-mechanical model for vestibular responses to sound in presence of a superior canal dehiscence. PhD Thesis, ETH Zürich, Dissertation No. 22681, available online

  • Grieser B, McGarvie LA, Kleiser L, Manzari L, Obrist D, Curthoys IS (2014) Numerical investigations of the effects of endolymphatic hydrops on the VOR response. J Vestib Res 24(2–3):219

    Google Scholar 

  • Grieser B, Kleiser L, Obrist D (2015) tullioFoam—a numerical model of the Tullio phenomenon. ETH E- Collections ETH Zürich, doi:10.3929/ethz-a-10435235

  • Gueta R, Levitt J, Xia A, Katz O, Oghalai JS, Rousso I (2011) Structural and mechanical analysis of tectorial membrane Tecta mutants. Biophys J 100(10):2530–2538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallauer WM (1974) Nonlinear mechanical behavior of the cochlea. PhD Thesis, Stanford University

  • Hornung HG (2006) Dimensional analysis: examples of the use of symmetry. Dover Publications Inc, Mineola

    Google Scholar 

  • Huber A, Linder T, Ferrazzini M, Schmid S, Dillier N, Stoeckli S, Fisch U (2001) Intraoperative assessment of stapes movement. Ann Otol Rhinol Laryngol 110(1):31–35

    Article  CAS  PubMed  Google Scholar 

  • Kaski D, Davies R, Luxon L, Bronstein AM, Rudge P (2012) The Tullio phenomenon: a neurologically neglected presentation. J Neurol 259(1):4–21

    Article  PubMed  Google Scholar 

  • Kim N, Steele CR, Puria S (2013) Superior-semicircular-canal dehiscence: effects of location, shape, and size on sound conduction. Hear Res 301:72–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Korteweg DJ (1878) Über die Fortpflanzungsgeschwindigkeit des Schalles in elastischen Röhren. Ann Phys 241(12):525–542

    Article  Google Scholar 

  • Kringlebotn M, Gundersen T (1985) Frequency characteristics of the middle ear. J Acoust Soc Am 77(1):159–164

    Article  CAS  PubMed  Google Scholar 

  • Küttler U, Wall W (2008) Fixed-point fluid–structure interaction solvers with dynamic relaxation. Comput Mech 43(1):61–72

    Article  Google Scholar 

  • Lesser MB, Berkley DA (1972) Fluid mechanics of the cochlea. Part 1. J Fluid Mech 51(3):497–512

    Article  Google Scholar 

  • Lighthill J (1978) Acoustic streaming. J Sound Vib 61(3):391–418

    Article  Google Scholar 

  • Lighthill J (1992) Acoustic streaming in the ear itself. J Fluid Mech 239:551–606

    Article  Google Scholar 

  • Minor LB (2000) Superior canal dehiscence syndrome. Am J Otol 21(1):9–19

    Article  CAS  PubMed  Google Scholar 

  • Minor LB (2005) Clinical manifestations of superior semicircular canal dehiscence. Laryngoscope 115(10):1717–1727

    Article  PubMed  Google Scholar 

  • Minor LB, Solomon D, Zinreich SJ, Zee DS (1998) Sound-and/or pressure-induced vertigo due to bone dehiscence of the superior semicircular canal. Arch Otolaryngol Head Neck Surg 124(3):249–258

    Article  CAS  PubMed  Google Scholar 

  • Minor LB, Cremer PD, Carey JP, Della Santina CC, Streubel SO, Weg N (2001) Symptoms and signs in superior canal dehiscence syndrome. Ann N Y Acad Sci 942(410):259–273

    CAS  PubMed  Google Scholar 

  • Niesten MEF, Stieger C, Lee DJ, Merchant JP, Grolman W, Rosowski JJ, Nakajima HH (2015) Assessment of the effects of superior canal dehiscence location and size on intracochlear sound pressures. Audiol Neuro Otol 20(1):62–71

    Article  Google Scholar 

  • Obrist D (2011) Fluid mechanics of the inner ear. Habilitation treatise. ETH Zürich, Zürich. doi:10.3929/ethz-a-007318979

    Google Scholar 

  • OpenFOAM Foundation (2015) OpenFOAM project web page. http://www.openfoam.org. Accessed 7 Feb 2015

  • Pisano DV, Niesten MEF, Merchant SN, Nakajima HH (2012) The effect of superior semicircular canal dehiscence on intracochlear sound pressures. Audiol Neuro Otol 17(5):338–348

    Article  Google Scholar 

  • Rabbitt RD, Boyle R, Highstein SM (1999) Influence of surgical plugging on horizontal semicircular canal mechanics and afferent response dynamics. J Neurophysiol 82(2):1033–1053

    CAS  PubMed  Google Scholar 

  • Riley N (2001) Steady streaming. Annu Rev Fluid Mech 33(1):43–65

    Article  Google Scholar 

  • Rosowski JJ, Songer JE, Nakajima HH, Brinsko KM, Merchant SN (2004) Clinical, experimental, and theoretical investigations of the effect of superior semicircular canal dehiscence on hearing mechanisms. Otol Neurotol 25:323–332

    Article  PubMed  Google Scholar 

  • Songer JE, Rosowski JJ (2007) A mechano-acoustic model of the effect of superior canal dehiscence on hearing in chinchilla. J Acoust Soc Am 122(2):943–951

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Buskirk WC, Watts RG, Liu YK (1976) The fluid mechanics of the semicircular canals. J Fluid Mech 78(01):87–98

    Article  Google Scholar 

  • von Békésy G (1960) Experiments in hearing. McGraw-Hill, New York

    Google Scholar 

  • Womersley JR (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol 127(3):553–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work of B. Grieser was supported by the Swiss National Science Foundation (SNSF, Grant No. 205321-138298). The authors would like to thank Prof. J. Dual for helpful remarks, C.-F. Benner for his support in the course of a master’s thesis (Benner 2015), and Dr. S. Hegemann for introducing them to the Tullio phenomenon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Obrist.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grieser, B.J., Kleiser, L. & Obrist, D. Identifying Mechanisms Behind the Tullio Phenomenon: a Computational Study Based on First Principles. JARO 17, 103–118 (2016). https://doi.org/10.1007/s10162-016-0553-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-016-0553-0

Keywords

Navigation