Skip to main content
Log in

Evidence for a role for cyclic AMP in modulating the action of 5-HT and an excitatory neuropeptide, FLP17A, in the pharyngeal muscle of Caenorhabditis elegans

  • Original Paper
  • Published:
Invertebrate Neuroscience

Abstract

The feeding activity of the nematode Caenorhabditis elegans is regulated by an anatomically well-defined network of 20 enteric neurones that employs small molecule and neuropeptidergic signalling. Two of the most potent excitatory agents are 5-HT and the neuropeptide FLP17A. Here we have examined the role of cAMP in modulating their excitatory actions by pharmacological manipulation of the level of cAMP. Application of the membrane permeable cAMP analogue, dibutyryl-cAMP (1 μM), enhanced the excitatory response to both FLP17A and 5-HT. Furthermore, the adenylyl cyclase activator, forskolin (50 nM), significantly enhanced the excitatory response to both FLP17A and 5-HT. The phosphodiesterase inhibitor, ibudilast (10 μM), enhanced the excitatory response to FLP17A. The protein kinase inhibitor, H-9 dihydrochloride (10 μM) significantly reduced the excitatory response to 5-HT. H-9 dihydrochloride also had a direct effect on pharyngeal activity. The effect of FLP17A and 5-HT on two mutants, egl-8 (loss-of-function phospholipase-Cβ) and egl-30 (loss-of-function Gαq) was also investigated. Both these mutants have a lower pharyngeal pumping rate than wild-type which has to be considered when interpreting the effects of these mutations on the excitatory responses to FLP17A and 5HT. However, even taking into consideration the lower basal activity of these mutants, it is clear that the percentage increase in pharyngeal pumping rate induced by FLP17A is greatly reduced in both mutants compared to wild-type. In the case of 5-HT, the effect of the mutant backgrounds on the response was less pronounced. Overall, the data support a role for cAMP in modulating the excitatory action of both FLP17A and 5-HT on C. elegans pharyngeal pumping and furthermore implicate an EGL-30 dependent pathway in the regulation of the response to FLP17A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference

  • Albertson DG, Thomson JN (1976) The pharynx of Caenorhabditis elegans. Philos Trans R Soc Lond B 275:299–325

    Article  CAS  Google Scholar 

  • Avery L, Horvitz HR (1990) Effect of starvation and neuroactive drugs on feeding in Caenorhabditis elegans. J Exp Zool 253:263–270

    Article  PubMed  CAS  Google Scholar 

  • Avery L, Raizen D, Lockery S (1995) Electrophysiological methods. Methods Cell Biol 48:251–269

    PubMed  CAS  Google Scholar 

  • Bargmann CI (1998) Neurobiology of the Caenorhabditis elegans genome. Science 282:2028–2033

    Article  PubMed  CAS  Google Scholar 

  • Bastiani C, Mendel J (2005) Heterotrimeric G-proteins in C. elegans. In: WormBase, ed. The C. elegans Research Community, Worm Book, http://www.wormbook

  • Baylis HA, Furuichi T, Yoshikawa F, Mikoshiba K, Sattelle DB (1999) Inositol 1,4,5-triphosphate receptors are strongly expressed in the nervous system, pharynx, intestine, gonad and excretory cell of Caenorhabditis elegans and are encoded by a single gene (itf-1). J Mol Biol 294:467–476

    Article  PubMed  CAS  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    PubMed  CAS  Google Scholar 

  • Brundage L, Avery L, Katz A, Kim UJ, Mendel JE, Sternberg PW, Simon MI (1996) Mutations in a C. elegans Gqalpha gene disrupt movement, egg laying and viability. Neuron 16:999–1009

    Article  PubMed  CAS  Google Scholar 

  • Buxton ILO, Brunton LL (1983) Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes. J Biol Chem 258:10233–10239

    PubMed  CAS  Google Scholar 

  • Coscoy S, Lingueglia E, Lazdunski M, Barbry P (1998) The Phe-Met-Arg-Phe-amide-activated sodium channel is a tetramer. J Biol Chem 273:8317–8322

    Article  PubMed  CAS  Google Scholar 

  • Cottrell GA (1997) The first peptide-gated ion channel. J Exp Biol 200:2377–2386

    PubMed  CAS  Google Scholar 

  • Croll NA (1975) Indolealkylamines in the co-ordination of nematode behavioural activities. Can J Zool 53:894–903

    PubMed  CAS  Google Scholar 

  • Hamdan FF, Ungrin MD, Abramovitz M, Ribeiro P (1999) Characterization of a novel serotonin receptor from Caenorhabditis elegans: cloning and expression of two splice variants. J Neurochem 72:1372–1383

    Article  PubMed  CAS  Google Scholar 

  • Hei YJ, MacDonnell KL, McNeill JH, Diamond J (1991) Lack of correlation between activation of cyclicAMP-dependent protein kinase and inhibition of contraction of rat vas deferens by cyclicAMP analogues. Mol Pharmacol 39:233–238

    PubMed  CAS  Google Scholar 

  • Hidaka H, Inagaki M, Kawamoto S, Sasaki Y (1984) Isoquinolinesulphonamides, novel and potent inhibitors of cyclic nucleotide-dependent protein kinase and proteinase C. Biochemistry 23:5036–5041

    Article  PubMed  CAS  Google Scholar 

  • Hobson RJ, Geng J, Gray AD, Komuniecki RW (2003) SER-7b, a constitutively active Galpha coupled 5-HT7-like receptor expressed in the Caenorhabditis eleagns M4 pharynx motoneurone. J Neurochem 87:22–29

    Article  PubMed  CAS  Google Scholar 

  • Hobson RJ, Hapiak VM, Xiao H, Buehrer KL, Komuniecki PR, Komuniecki RW (2006) Ser-7, a Caenorhabditis elegans 5-HT7-like receptor, is essential for the 5-HT stimulation of pharyngeal pumping and egg laying. Genetics 172:159–169

    Article  PubMed  CAS  Google Scholar 

  • Holden-Dye L, Brownlee DJA, Walker RJ (1997) The effect of the peptide KPNFIRFamide (PF4) on the somatic muscle cell of the parasitic nematode, Ascaris suum. Br J Pharmacol 120:379–386

    Article  PubMed  CAS  Google Scholar 

  • Horvitz HR, Chalfie M, Trent C, Sulston J, Evans PD (1982) Serotonin and octopamine in the nematode, C. elegans. Science 216:1012–1014

    Article  PubMed  CAS  Google Scholar 

  • Husson SJ, Clynen E, Baggerman G, De Loof A, Schoofs L (2005) Discoving neuropeptides in Caenorhabditis elegans. Biochem Biophys Res Commun 335:76–86

    Article  PubMed  CAS  Google Scholar 

  • Ikezono K, Michel MC, Zerkowski HR, Beckeringh JJ, Brodde OE (1987) The role of cyclic AMP in the positive inotropic effect mediated by β1- and β2-adrenoceptors in isolated human right atrium. Naunyn-Schmiedeberg’s Arch Pharmacol 335:561–566

    Article  CAS  Google Scholar 

  • Keating CD, Kriek N, Daniels M, Ashcroft NR, Hopper NA, Siney EJ, Holden- Dye L, Burke JF (2003) Whole-genome analysis of 60 G-protein-coupled receptors in Caenorhabditis elegans by gene knockout with RNAi. Curr Biol 13:1715–1720

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Li C (2004) Expression and regulation of an FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. J Comp Neurol 475:540–550

    Article  PubMed  CAS  Google Scholar 

  • Komuniecki RW, Hobson RJ, Rex EB, Hapiak VM, Komuniecki PR (2004) Biogenic amine receptors in parasitic nematodes: what can be learnt from Caenorhabditis elegans? Mol Biochem Parasitol 137:1–11

    Article  PubMed  CAS  Google Scholar 

  • Kubiak TM, Larsen MJ, Nulf SC, Zantello MR, Burton KJ, Bowman JW, Modric T, Lowery DE (2003a) Differential activation of “social” and “solitary” variants of the Caenorhabditis elegans G-protein-coupled receptor NPR-1 by its cognate ligand AF9. J Biol Chem 278:33724–33729

    Article  PubMed  CAS  Google Scholar 

  • Kubiak TM, Larsen MJ, Zantello MR, Bowman JW, Nulf SC, Lowery DE (2003b) Functional annotation of the putative orphan Caenorhabditis elegans G-protein-coupled receptor C10C6.2 as a FLP15 peptide receptor. J Biol Chem 278:42115–42120

    Article  PubMed  CAS  Google Scholar 

  • Lackner MR, Nurrish SJ, Kaplan JM (1999) Facilitation of synaptic transmission by EGL-30 Gqalpha and EGL-8 PLC-β: ADG binding UNC-13 is required to stimulate acetylcholine release. Neuron 24:335–346

    Article  PubMed  CAS  Google Scholar 

  • Lee RYN, Chalfie M, Horvitz HR, Avery L (1999) Eat-4, a homolog of a mammalian sodium-dependent inorganic phosphate co-transporter, is necessary for glutamatergic neurotransmission in Caenorhabditis elegans. J Neurosci 19:159–167

    PubMed  CAS  Google Scholar 

  • Li C (2005) The ever-expanding neuropeptide gene families in the nematode, Caenorhabditis elegans. Parasitology 131:S109–S127

    Article  PubMed  CAS  Google Scholar 

  • Li C, Kim K, Nelson K (1999) FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. Brain Res 848:26–34

    Article  PubMed  CAS  Google Scholar 

  • Lingueglia E, Champigny G, Lazdunski M, Barbry P (1995) Cloning of the amiloride-sensitive FMRFamide peptide-gated sodium-gated channel. Nature 378:730–733

    Article  PubMed  CAS  Google Scholar 

  • Marchese A, George SR, Kolakowski Jr. LF, Lynch KR, O’Dowd F (1999) Novel GPCRs and their endogenous ligands: expanding the boundaries of physiology and pharmacology. Trends Pharmacol Sci 20:370–375

    Article  PubMed  CAS  Google Scholar 

  • McVeigh P, Geary TG, Marks NJ, Kimber MJ, Maule AG (2006) The FLP-side of nematodes. Trends Parasitol 22:385–396

    Article  PubMed  CAS  Google Scholar 

  • Mertens I, Vandingenen A, Meeusen T, Janssen T, Luyten W, Nachman RJ, De Loof A, Schoofs L (2004) Functional characterization of the putative orphan neuropeptide G-protein-coupled receptor C26F1.6 in Caenorhabditis elegans. FEBS Letts 573:55–60

    Article  CAS  Google Scholar 

  • Mertens I, Clinckspoor I, Janssen T, Nachman R, Schoofs L (2005a) FMRFamide- related peptide ligands activate the Caenorhabditis elegans orphan GPCR Y59H11AL.1. Peptides 27:1291–1296

    Article  PubMed  CAS  Google Scholar 

  • Mertens I., Meeusen T, Janssen T, Nachman R, Schoofs L (2005b) Molecular characterization of two G-protein-coupled receptor splice variants as FLP2 receptors in Caenorhabditis elegans. Biochem Biophys Res Commun 330:967–974

    Article  PubMed  CAS  Google Scholar 

  • Niacaris T, Avery L (2003) Serotonin regulates repolarization of the C. elegans pharyngeal muscle. J Exp Biol 206:223–231

    Article  PubMed  CAS  Google Scholar 

  • Nusbaum MP, Blitz DM, Swensen AM, Wood D, Marder E (2001) The roles of co-transmission in neural network modulation. Trends Neurosci 24:146–154

    Article  PubMed  CAS  Google Scholar 

  • Olde B, McCrombie WR (1997) Molecular cloning and functional expression of a serotonin receptor from Caenorhabditis elegans. J Mol Neurosci 8:53–62

    Article  PubMed  CAS  Google Scholar 

  • Papaioannou S, Marsden D, Franks CJ, Walker RJ, Holden-Dye L (2005) Role of a FMRFamide-like family of neuropeptides in the pharyngeal nervous system of Caenorhabditis elegans. J Neurobiol 65:304–319

    Article  PubMed  CAS  Google Scholar 

  • Probst WC, Snyder LA, Schuster DI, Brosius J, Sealfon SC (1992) Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol 11:1–20

    Article  PubMed  CAS  Google Scholar 

  • Purcell J, Robertson AP, Thompson DP, Martin RJ (2002) PF4, a FMRFamide-related peptide gates low conductance Cl¯ channels in Ascaris suum. Eur J Pharmacol 456:11–17

    Article  PubMed  CAS  Google Scholar 

  • Reinitz CA, Herfel HG, Messinger LA, Stretton AOW (2000) Changes in and cAMP locomotory behaviour produced in Ascaris suum by neuropeptiodes from Ascaris and C. elegans. Mol Biochem Parasitol 111:185–197

    Article  PubMed  CAS  Google Scholar 

  • Rogers CM, Franks CJ, Walker RJ, Burke JF, Holden-Dye L (2001) Regulation of the pharynx of Caenorhabditis elegans by 5-HT, octopamine and FMRFamide-like neuropeptides. J Neurobiol 49:235–244

    Article  PubMed  CAS  Google Scholar 

  • Rogers CM, Reale V, Kim K, Chatwin H, Li C, Evans P, de Bono M (2003) Inhibition of Caenorhabditis elegans social feeding by FMRFamide-related peptide activation of NPR-1. Nat Neurosci 6:1178–1185

    Article  PubMed  CAS  Google Scholar 

  • Sanyal S, Wintle RF, Kindt KS, Nuttley WN, Arvan R, Fitzmaurice P, Bigras E, Merz DC, Hebert TE, van der Kooy D, Schafer WR, Culotti JG, van Tol HTM (2004) Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans. EMBO J 23:473–482

    Article  PubMed  CAS  Google Scholar 

  • Sawin ER, Ranganathan R, Horvitz HR (2000) C. elegans locomotion rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26:619–631

    Article  PubMed  CAS  Google Scholar 

  • Seamon KB, Daly JW, Metzger H, de Souza NJ, Reden J (1983) Structure-activity relationships for activation of adenylate cyclase by the diterpene forskolin and its derivatives. J Med Chem 26:436–439

    Article  PubMed  CAS  Google Scholar 

  • Souness JE, Villamil ME, Scott LC, Tomkinson A, Giembycz MA, Raeburn D (1994) Possible role of cyclicAMP phosphodiesterases in the actions of ibudilast on eosinophil thromboxane generation and airways smooth muscle tone. Br J Pharmacol 111:1081–1088

    PubMed  CAS  Google Scholar 

  • Thompson DP, David JP, Larsen MJ, Coscarelli EM, Zinser EW, Bowman JW, Alexander-Bowman SJ, Marks NJ, Geary TG (2003) Effects of KHEYLRFamide and KNEFIRFamide on cyclic adenosine monophosphate levels in Ascaris suum somatic muscle. Int J Parasitol 33:199–208

    Article  PubMed  CAS  Google Scholar 

  • Tsalik EL, Niacaris T, Wenick AS, Pau K, Avery L, Hobert O (2003) LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C elegans nervous system. Dev Biol 263:81–102

    Article  PubMed  CAS  Google Scholar 

  • Yew JY, Kutz KK, Dikler S, Messinger L, Li L, Stretton AO (2005) Mass spectrometric map of neuropeptide expression in Ascaris suum. J Comp Neurol 488:396–413

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored in part by the Biotechnology and Biological Sciences Research Council (UK) and the University of Southampton. We gratefully acknowledge the C. elegans Genetics Centre, which is funded by the NIH National Center for Resources, for provision of some strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Walker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papaioannou, S., Holden-Dye, L. & Walker, R.J. Evidence for a role for cyclic AMP in modulating the action of 5-HT and an excitatory neuropeptide, FLP17A, in the pharyngeal muscle of Caenorhabditis elegans . Invert Neurosci 8, 91 (2008). https://doi.org/10.1007/s10158-008-0072-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10158-008-0072-8

Keywords

Navigation