Skip to main content

Advertisement

Log in

Proteomic analysis indicates altered expression of plasma proteins in a rat nephropathy model

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Minimal-change nephrotic syndrome is an idiopathic disease in which protein leaks through podocytes into the urine. We used proteomic tools to examine differences of plasma protein expression in healthy rats and rats with doxorubicin-induced nephropathy treated with or without prednisone.

Methods

Healthy three-month-old Sprague–Dawley male rats were randomly chosen for one injection of doxorubicin (5.5 mg/kg) through the caudal vein to induce nephropathy (n = 50) or the same volume of saline (control, n = 20). After 1 week, 25 rats in the nephropathy group received topical prednisone (5.5 mg/kg/day) for 21 days and another 25 rats (untreated nephropathy) and the control rats received topical water. At 4 weeks, protein chips generated from rat plasma samples were analyzed by surface enhanced laser desorption/ionization–time of flight mass spectrometry (SELDI–TOF–MS) to obtain mass-to-charge ratios (m/z) of proteins of 2–50 kDa.

Results

Relative to control rats, untreated nephropathic rats had four significantly higher and seven significantly lower m/z peaks. Prednisone treatment significantly normalized the intensities of peaks 9069 and 15005 (which correspond to cortexin-1 and interleukin-17A, respectively, according to Swiss Prot database) by increasing the expression of 9069 but reducing expression of 15005.

Conclusion

Significant differences in plasma proteins can be identified by proteomic analysis using SELDI–TOF–MS in a rat model of nephropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lane JC, Kaskel FJ. Pediatric nephrotic syndrome: from the simple to the complex. Semin Nephrol. 2009;29:389–98.

    Article  PubMed  CAS  Google Scholar 

  2. Cameron JS, Turner DR, Ogg CS, Sharpstoner P, Brown CB. The nephrotic syndrome in adults with ‘minimal change’ glomerular lesions. Q J Med. 1974;43:461–88.

    PubMed  CAS  Google Scholar 

  3. He K, Li R. Analysis on wean refractory nephropathy. Chin J Pract Integr Med. 2004;4:2621–2.

    Google Scholar 

  4. Yue Z, Min W, Qian W, Fei C, Jing Y, Boguang L, et al. Study on the establishment of the model of minimal change nephropathy with adriamycin in rats. J Beijing Univ TCM. 2002;3:16–8.

    Google Scholar 

  5. Traum AZ, Schachter AD. Proteomic analysis in pediatric renal disease. Semin Nephrol. 2007;27:652–7.

    Article  PubMed  CAS  Google Scholar 

  6. Yoshida Y, Miyamoto M, Bo X, Yaoita E, Yamamoto T. Overview of kidney and urine proteome databases. Contrib Nephrol. 2008;160:186–97.

    Article  PubMed  CAS  Google Scholar 

  7. Gorg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics. 2004;4:3665–85.

    Article  PubMed  Google Scholar 

  8. De Bock M, de Seny D, Meuwis MA, Chapelle JP, Louis E, Malaise M, et al. Challenges for biomarker discovery in body fluids usingSELDI–TOF-MS. J Biomed Biotechnol. 2010;2010:906082.

    PubMed  Google Scholar 

  9. Merchant ML, Klein JB. Proteomics and diabetic nephropathy. Semin Nephrol. 2007;27:627–36.

    Article  PubMed  CAS  Google Scholar 

  10. Yoshida Y, Miyazaki K, Kamiie J, Sato M, Okuizumi S, Kenmochi A, et al. Two-dimensional electrophoretic profiling of normal human kidney glomerulus proteome and construction of an extensible markup language (XML)-based database. Proteomics. 2005;5:1083–96.

    Article  PubMed  CAS  Google Scholar 

  11. Miyamoto M, Yoshida Y, Taguchi I, Nagasaka Y, Tasaki M, Zhang Y, et al. In-depth proteomic profiling of the normal human kidney glomerulus using two-dimensional protein prefractionation in combination with liquid chromatography-tandem mass spectrometry. J Proteome Res. 2007;6:3680–90.

    Article  PubMed  CAS  Google Scholar 

  12. Oh J, Pyo JH, Jo EH, Hwang SI, Kang SC, Jung JH, et al. Establishment of a near-standard two-dimensional human urine proteomic map. Proteomics. 2004;4:3485–97.

    Article  PubMed  CAS  Google Scholar 

  13. Pieper R, Gatlin CL, McGrath AM, Makusky AJ, Mondal M, Seonarain M, et al. Characterization of the human urinary proteome: a method for high-resolution display of urinary proteins on two dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots. Proteomics. 2004;4:1159–74.

    Article  PubMed  CAS  Google Scholar 

  14. Khan A, Packer NH. Simple urinary sample preparation for proteomic analysis. J Proteome Res. 2006;5:2824–38.

    Article  PubMed  CAS  Google Scholar 

  15. Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA. 2004;101:13368–73.

    Article  PubMed  CAS  Google Scholar 

  16. Hawkridge AM, Muddiman DC. Mass spectrometry-based biomarker discovery: toward a global proteome index of individuality. Annu Rev Anal Chem. 2009;2:265–77.

    Article  CAS  Google Scholar 

  17. Sparbier K, Wenzel T, Dihazi H. Immuno-MALDI–TOF MS, new perspectives for clinical applications of mass spectrometry. Proteomics. 2009;9:1442–50.

    Article  PubMed  CAS  Google Scholar 

  18. Hutchens T, Yip T. New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Commun Mass Spectrom. 1993;7:576–80.

    Article  CAS  Google Scholar 

  19. Jr GW, Cazares LH, Leung SM, Nasim S, Adam BL, Yip TT, et al. ProteinChip® surface enhanced laser desorption/ionization (SELDI) mass spectrometry: a novel protein biochip technology for detection of prostate cancer biomarkers in complex protein mixtures. Prostate Cancer Prostatic Dis. 1999;2:264–76.

    Article  PubMed  Google Scholar 

  20. Wright GL Jr. SELDI protein chip MS: a platform for biomarker discovery and cancer diagnosis. Expert Rev Mol Diag. 2002;2:549–63.

    Article  CAS  Google Scholar 

  21. Tang N, Tornatore P, Weinberger SR. Current developments in SELDI affinity technology. Mass Spectrom Rev. 2004;23:34–44.

    Article  PubMed  CAS  Google Scholar 

  22. Zhao H, Ljungberg B, Grankvist K, Rasmuson T, Tibshirani R, Brooks JD. Gene expression profiling predicts survival in conventional renal cell carcinoma. PLoS Med. 2006;3:e13.

    Article  PubMed  Google Scholar 

  23. Oberthuer A, Berthold F, Warnat P, Hero B, Kahlert Y, Spitz R, et al. Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification. J Clin Oncol. 2006;24:5070–8.

    Article  PubMed  CAS  Google Scholar 

  24. Liu LL, Qin Y, Cai JF, Wang HY, Tao JL, Li H, et al. Th17/Treg imbalance in adult patients with minimal change nephrotic syndrome. Clin Immunol. 2011;139:314–20.

    Article  PubMed  CAS  Google Scholar 

  25. Matsumotoa K, Kanmatsuse K. Increased urinary excretion of interleukin-17 in nephrotic patients. Nephron. 2002;91:243–9.

    Article  Google Scholar 

  26. Puppione DL, Ryan CM, Bassilian S, Souda P, Xiao X, Ryder OA, et al. Detection of two distinct forms of apoC-I in great apes. Comp Biochem Physiol Part D Genomics Proteomics. 2010;5:73–9.

    Article  PubMed  Google Scholar 

  27. Arystarkhova E, Wetzel RK, Sweadner KJ. Distribution and oligomeric association of splice forms of Na+-K+-ATPase regulatory gamma-subunit in rat kidney. Am J Physiol Renal Physiol. 2002;282:393–407.

    Google Scholar 

  28. Breiteneder-Geleff S, Matsui K, Soleiman A, Meraner P, Poczewski H, Kalt R, et al. Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis. Am J Pathol. 1997;151:1141–52.

    PubMed  CAS  Google Scholar 

  29. Gonzalez E, Neuhaus T, Kemper MJ, Giradin E. Proteomic analysis of mononuclear cells of patients with minimal-change nephrotic syndrome of childhood. Nephrol Dial Transplant. 2009;24:149–55.

    Article  PubMed  CAS  Google Scholar 

  30. Bertani T, Poggi A, Pozzoni R, Delaini F, Sacchi G, Thoua Y, et al. Adriamycin-induced nephrotic syndrome in rats: sequence of pathologic events. Lab Invest. 1982;46:16–23.

    PubMed  CAS  Google Scholar 

  31. Bricio T, Molina A, Egido J, Gonzalez E, Mampaso F. IL-1-like production in adriamycin-induced nephrotic syndrome in the rat. Clin Exp Immunol. 1992;87:117–21.

    Article  PubMed  CAS  Google Scholar 

  32. Ishikawa I, Hayama T, Yoshida S, Asaka M, Tomosugi N, Watanabe M, et al. Proteomic analysis of rat plasma by SELDI–TOF-MS under the condition of prevention of progressive adriamycin nephropathy using oral adsorbent AST-120. Nephron Physiol. 2006;103:125–30.

    Article  Google Scholar 

  33. Hammer E, Bien S, Salazar MG, Steil L, Scharf C, Hildebrandt P, et al. Proteomic analysis of doxorubicin-induced changes in the proteome of HepG2cells combining 2-D DIGE and LC-MS/MS approaches. Proteomics. 2010;10:99–114.

    Article  PubMed  CAS  Google Scholar 

  34. Chen Y, Daosukho C, Wycliffe O, Turner DM, Pierce WM, Klein JB, et al. Redox proteomic identification of oxidized cardiac proteins in Adriamycin-treated mice. Free Radic Biol Med. 2006;41:1470–7.

    Article  PubMed  CAS  Google Scholar 

  35. Coulter PM 2nd, Bautista EA, Margulies JE, Watson JB. Identification of cortexin: a novel, neuron-specific, 82-residue membrane protein enriched in rodent cerebral cortex. J Neurochem. 1993;61:756–9.

    Article  PubMed  CAS  Google Scholar 

  36. Wang HT, Chang JW, Guo Z, Li BG. In silico-initiated cloning and molecular characterization of cortexin 3, a novel human gene specifically expressed in the kidney and brain, and well conserved in vertebrates. Int J Mol Med. 2007;20:501–10.

    PubMed  CAS  Google Scholar 

  37. Chakraborty S, Khan GA, Karmohapatra SK, Bhattacharya R, Bhattacharya G, Sinha AK. Purification and mechanism of action of “cortexin”, a novel antihypertensive protein hormone from kidney and its role in essential hypertension in men. J Am Soc Hypertens. 2009;3:119–32.

    Article  PubMed  Google Scholar 

  38. Kontchou LM, Liccioli G, Pela I. Blood pressure in children with minimal change nephrotic syndrome during oedema and after steroid therapy: the influence of familial essential hypertension. Kidney Blood Press Res. 2009;32:258–62.

    Article  PubMed  Google Scholar 

  39. Gipson DS, Massengill SF, Yao L, Nagaraj S, Smoyer WE, Mahan JD, et al. Management of childhood onset nephrotic syndrome. Pediatrics. 2009;124:747–57.

    Article  PubMed  Google Scholar 

  40. LaBaer J. So, you want to look for biomarkers? J Proteome Res. 2005;4:1053–9.

    Article  PubMed  CAS  Google Scholar 

  41. Knepper MA. Common sense approaches to urinary biomarker study design. J Am Soc Nephrol. 2009;20:1175–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by the Natural Science Foundation of Fujian (project numbers 2007J0307, 2008J0093).

Conflict of interest

The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zheng.

About this article

Cite this article

Ai, S., Zheng, J., Lin, Q. et al. Proteomic analysis indicates altered expression of plasma proteins in a rat nephropathy model. Clin Exp Nephrol 17, 24–31 (2013). https://doi.org/10.1007/s10157-012-0662-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-012-0662-y

Keywords

Navigation