Skip to main content

Advertisement

Log in

Differentially expressed urinary biomarkers in children with idiopathic nephrotic syndrome

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

We performed a discovery phase of urinary proteomic profile in children with idiopathic nephrotic syndrome and validated selected biomarkers.

Methods

Urinary proteomic profile was performed using isobaric tags for relative and absolute quantitation labeling, coupled with liquid chromatography-matrix assisted laser desorption and ionization analysis. Validation of biomarkers apolipoprotein A1, alpha 2 macroglobulin, orosomucoid 2, retinol binding protein 4 and leucine-rich alpha 2-glycoprotein 1 was done by enzyme-linked immunosorbent assay.

Results

Apolipoprotein A1 levels of <0.48 µg/mg of creatinine-differentiated steroid-resistant nephrotic syndrome (SRNS) from first episode nephrotic syndrome, area under curve (AUC) [0.99 (CI 0.9–1.0), 100 % sensitivity and 100 % specificity] and a value of <0.24 µg/mg of creatinine could differentiate SRNS from frequently relapsing nephrotic syndrome/steroid dependent nephrotic syndrome [AUC 0.99 (CI 0.9–1.0), 100 % sensitivity and 100 % specificity]. Alpha 2 macroglobulin could differentiate children with SRNS-focal segmental glomerulosclerosis (FSGS) from SRNS-minimal change disease (MCD) at values >3.3 µg/mg of creatinine [AUC 0.84 (CI 0.62–1.0), 90 % sensitivity and 85 % specificity]. Orosomucoid 2 >1.81 µg/mg of creatinine could distinguish SRNS-FSGS from SRNS-MCD [AUC 0.84 (CI 0.62–1.0), sensitivity 90 % and specificity 85.5 %]. RBP 4 value of >1.54 µg/mg of creatinine differentiated SRNS-FSGS from SRNS-MCD [AUC 0.87 (CI 0.68–1.0), sensitivity 90 % and specificity 85.7 %].

Conclusions

Lower level of apolipoprotein A1 in urine is suggestive of SRNS. Alpha 2 macroglobulin, retinol binding protein 4 and orosomucoid 2 are markers associated with FSGS, with alpha 2 macroglobulin being most predictive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Indian Pediatric Nephrology Group, Indian Academy of Pediatrics. Management of steroid sensitive nephrotic syndrome: revised guidelines. Indian Pediatr. 2008;45:203–14.

    Google Scholar 

  2. Varghese SA, Powell TB, Budisavljevic MN, Oates JC, Raymond JR, Almeida JS, et al. Urine biomarkers predict the cause of glomerular disease. J Am Soc Nephrol. 2007;18(3):913–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kalantari S, Nafar M, Samavat S, Rezaei-Tavirani M, Rutishauser D, Zubarev R. Urinary prognostic biomarkers in patients with focal segmental glomerulosclerosis. Nephro Urol Mon. 2014;6(2):e16806.

    Article  Google Scholar 

  4. Streckfus CF, Mayorga-Wark O, Arreola D, Edwards C, Bigler L, Dubinsky WP. Breast cancer related proteins are present in saliva and are modulated secondary to ductal carcinoma in situ of the breast. Cancer Invest. 2008;26:159–67.

    Article  CAS  PubMed  Google Scholar 

  5. Bijian K, Mlynarek AM, Balys RL, Jie S, Xu Y, Hier MP, et al. Serum proteomic approach for the identification of serum biomarkers contributed by oral squamous cell carcinoma and host tissue microenvironment. J Proteome Res. 2009;8:2173–85.

    Article  CAS  PubMed  Google Scholar 

  6. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteom. 2004;3:1154–69.

    Article  CAS  Google Scholar 

  7. O’Riordan E, Orlova TN, Mei JJ, Butt K, Chander PM, Rahman S, et al. Bioinformatic analysis of the urine proteome of acute allograft rejection. J Am Soc Nephrol. 2004;15:3240–8.

    Article  PubMed  Google Scholar 

  8. Nguyen MT, Ross GF, Dent CL, Devarajan P. Early prediction of acute renal injury using urinary proteomics. Am J Nephrol. 2005;25(4):318–26.

    Article  CAS  PubMed  Google Scholar 

  9. Haubitz M, Wittke S, Weissinger EM, Walden M, Rupprecht HD, Floege J. Urine protein patterns can serve as diagnostic tools in patients with IgA nephropathy. Kidney Int. 2005;67(6):2313–20.

    Article  CAS  PubMed  Google Scholar 

  10. Ginsberg JM, Chang BS, Matarese RA, Garella S. Use of single voided urine samples to estimate quantitative proteinuria. NEJM. 1983;309:1543–6.

    Article  CAS  PubMed  Google Scholar 

  11. Lemann J Jr, Doumas BT. Proteinuria in health and disease assessed by measuring the urinary protein/creatinine ratio. Clin Chem. 1987;33:297–9.

    CAS  PubMed  Google Scholar 

  12. Schwab SJ, Christensen RL, Dougherty K, Klahr S. Quantitation of proteinuria by the use of protein-to-creatinine ratios in single urine samples. Arch Intern Med. 1987;147:943–4.

    Article  CAS  PubMed  Google Scholar 

  13. Andersen RF, Palmfeldt J, Jespersen B, Gregersen N, Rittig S. Plasma and urine proteomic profiles in childhood idiopathic nephrotic syndrome. Proteom Clin Appl. 2012;6:382–93.

    Article  CAS  Google Scholar 

  14. Corzett TH, Fodor IK, Choi MW, Walsworth VL, Turteltaub KW, McCutchen-Maloney SL, et al. Statistical analysis of variation in the human plasma proteome. J Biomed Biotech. 2010;258494.

  15. Grundy SM, Vega GL. Role of apolipoprotein levels in clinical practice. Arch Intern Med. 1990;150:1579–82.

    Article  CAS  PubMed  Google Scholar 

  16. Vaziri ND. Molecular mechanisms of lipid disorders in nephrotic syndrome. Kidney Int. 2003;63:1964–76.

    Article  PubMed  Google Scholar 

  17. Kozak KR, Su F, Whitelegge JP, Faull K, Reddy S, Farias-Eisner R. Characterization of serum biomarkers for detection of early stage ovarian cancer. Proteomics. 2005;5:4589–96.

    Article  CAS  PubMed  Google Scholar 

  18. Li H, Li C, Wu H, Zhang T, Wang J, Wang S, et al. Identification of Apo-A1 as a biomarker for early diagnosis of bladder transitional cell carcinoma. Proteome Sci. 2011;9:21.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Candiano G, Bruschi M, Petretto A, Santucci L, Del Boccio P, Urbani A, et al. Proteins and protein fragments in nephrotic syndrome: clusters, specificity and mechanisms. Proteom Clin Appl. 2008;2:956–63.

    Article  CAS  Google Scholar 

  20. Lopez-Hellina J, Cantarellb C, Jimenoc L, Sanchez-Fructuosod A, Puig-Gaya N, Guiradoe N. A form of apolipoprotein A-I is found specifically in relapses of focal segmental glomerulosclerosis following transplantation. Am J Transplant. 2013;13:493–500.

    Article  Google Scholar 

  21. Rehman AA, Ahsan H, Khan FH. Alpha-2-macroglobulin: a physiological guardian. J Cell Physiol. 2013;228:1665–75.

    Article  CAS  PubMed  Google Scholar 

  22. Sain-van De, der Velden MG, Rabelink TJ, Reijngoud DJ, Gadellaa MM, Voorbij HA, Stellaard F, et al. Plasma alpha 2 macroglobulin is increased in nephrotic patients as a result of increased synthesis alone. Kidney Int. 1998;54:530–5.

    Article  Google Scholar 

  23. Mahajan SK. Zinc in kidney disease. J Am Coll Nutr. 1989;8:296–304.

    Article  CAS  PubMed  Google Scholar 

  24. Tumer N, Baskan S, Arcasoy A, Cavdar AO, Ekim M. Zinc metabolism in nephrotic syndrome. Nephron. 1989;52:95.

    Article  CAS  PubMed  Google Scholar 

  25. McBean LD, Smith JC, Berne BH, Halsted JA. Serum zinc and alpha 2-macroglobulin concentration in myocardial infarction, decubitus ulcer, multiple myeloma, prostatic carcinoma, Down’s syndrome and nephrotic syndrome. Int J Clin Chem. 1974;50:43–51.

    CAS  Google Scholar 

  26. Ellis D, Buffone GJ. Protein clearances and selectivity determinations in childhood nephrosis: a reappraisal. Clin Chem. 1981;27:1397–400.

    CAS  PubMed  Google Scholar 

  27. Zaffanello M, Franchini M. Thromboembolism in childhood nephrotic syndrome: a rare but serious complication. Hematology. 2007;12:69–73.

    Article  PubMed  Google Scholar 

  28. Asami T, Ohsawa S, Tomisawa S, Hashimoto K, Toyabe S, Sakai K. Glomerular deposition of alpha 2-macroglobulin in a child with steroid refractory nephrotic syndrome. Nephron. 1992;61:211–3.

    Article  CAS  PubMed  Google Scholar 

  29. Ito S, Usami A, Yamazaki M, Shibata A. A radioimmunometric assay for urinary alpha 2-macroglobulin. Tohoku J Exp Med. 1995;176:137–47.

    Article  CAS  PubMed  Google Scholar 

  30. Bazzi C, Rizza V, Casellato D, Stivali G, Rachele G, Napodano P, et al. Urinary IgG and α2-macroglobulin are powerful predictors of outcome and responsiveness to steroids and cyclophosphamide in idiopathic focal segmental glomerulosclerosis with nephrotic syndrome. Biomed Res Int. 2013;2013:941831.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Amico GD, Bazzi C. Pathophysiology of proteinuria. Kidney Int. 2003;63:809–25.

    Article  PubMed  Google Scholar 

  32. Fournier T, Medjoubi NN, Porquet D. Alpha-1-acid glycoprotein. Biochim Biophys Acta. 2000;1482:157–71.

    Article  CAS  PubMed  Google Scholar 

  33. Hjalmarsson C, Lidell ME, Haraldsson B. Beneficial effects of orosomucoid on the glomerular barrier in puromycin aminonucleoside-induced nephrosis. Nephrol Dial Transpl. 2006;21:1223–30.

    Article  CAS  Google Scholar 

  34. Watson L, Midgley A, Pilkington C, Tullus K, Marks S, Holt R, et al. Urinary monocyte chemoattractant protein 1 and alpha 1 acid glycoprotein as biomarkers of renal disease activity in juvenile-onset systemic lupus erythematosus. Lupus. 2012;21:496–501.

    Article  CAS  PubMed  Google Scholar 

  35. Frey SK, Nagl B, Henze A, Raila J, Schlosser B, Berg T, et al. Isoforms of retinol binding protein 4 (RBP4) are increased in chronic diseases of the kidney but not of the liver. Lipid Health Dis. 2008;7:29.

    Article  Google Scholar 

  36. Tomlinson PA, Dalton RN, Hartley B, Haycock GB, Chantler C. Low molecular weight protein excretion in glomerular disease: a comparative analysis. Pediatr Nephrol. 1997;11:285–90.

    Article  CAS  PubMed  Google Scholar 

  37. Dillon SC, Taylor GM, Shah V. Diagnostic value of urinary retinol-binding protein in childhood nephrotic syndrome. Pediatr Nephrol. 1998;12:643–7.

    Article  CAS  PubMed  Google Scholar 

  38. Venkatachalam MA, Bernard DB, Donohoe JF, Levinsky NG. Ischemic damage and repair in the rat proximal tubule: differences among the S1, S2, and S3 segments. Kidney Int. 1978;14:31–49.

    Article  CAS  PubMed  Google Scholar 

  39. Maack T, Johnson V, Kau ST, Figueiredo J, Sigulem D. Renal filtration, transport, and metabolism of low-molecular-weight proteins: a review. Kidney Int. 1979;16:251–70.

    Article  CAS  PubMed  Google Scholar 

  40. Norden AG, Lapsley M, Unwin RJ. Urine retinol binding protein 4: a functional biomarker of the proximal renal tubule. Adv Clin Chem. 2014;63:85–122.

    Article  CAS  PubMed  Google Scholar 

  41. Kalantari S, Rutishauser D, Samavat S, Nafar M, Mahmudieh L, Rezaei-Tavirani M, et al. Urinary prognostic biomarkers and classification of IgA nephropathy by high resolution mass spectrometry coupled with liquid chromatography. PLoS One. 2013;8(12):e80830.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This paper was presented at the 16th Congress of the International Pediatric Nephrology Association in Shanghai 2013 in the Symposium 06 ‘Omics’ in Pediatric Nephrology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijeet Saha.

Ethics declarations

Conflict of interest

None.

Electronic supplementary material

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, C.P., Saha, A., Kaur, M. et al. Differentially expressed urinary biomarkers in children with idiopathic nephrotic syndrome. Clin Exp Nephrol 20, 273–283 (2016). https://doi.org/10.1007/s10157-015-1162-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-015-1162-7

Keywords

Navigation