Skip to main content

Advertisement

Log in

Quantitative analysis of the BRAF V600E mutation in circulating tumor-derived DNA in melanoma patients using competitive allele-specific TaqMan PCR

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

BRAF V600E is a common mutation in melanoma, and BRAF inhibitors are effective in treating of BRAF mutation-positive melanoma. DNA carrying this mutation is released from melanoma cells into the circulation. As such, circulating tumor-derived DNA (ctDNA) in peripheral blood represents a novel biomarker for evaluating tumor features in cancer patients. However, ctDNA is present in the peripheral blood at very low levels, which makes the detection of specific mutations in this DNA a challenge. Competitive allele-specific TaqMan PCR (castPCR), a straightforward commercially available assay, is a sensitive technique for quantitating a small amount of DNA.

Methods

The level of BRAF V600E ctDNA was quantified by castPCR in 26 consecutive plasma samples from six melanoma patients.

Results

The castPCR assay was performed using a mixture of BRAF V600E DNA and BRAF wild DNA and found to be able to detect BRAF V600E at a fractional abundance of ≥0.5 % in 2- to 10-ng samples of genomic DNA. Cell-free DNA was then extracted from peripheral blood samples collected from six patients with melanoma harboring the BRAF V600E mutation. BRAF V600E ctDNA was detected in three patients, at a fractional abundance of between 1.28 and 58.0 % of total BRAF cell-free DNA. The abundance of BRAF V600E ctDNA correlated with tumor burden, as determined by computed tomography imaging. In two cases, an increase in the level of BRAF V600E ctDNA preceded exacerbation of clinical symptoms.

Conclusion

The castPCR assay can detect and quantitate small amounts of BRAF V600E ctDNA in samples containing large amounts of BRAF wild cell-free DNA. Thus, we suggest that the castPCR assay is suitable for monitoring ctDNA in the plasma of melanoma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Menzies AM, Long GV (2014) Systemic treatment for BRAF-mutant melanoma: where do we go next? Lancet Oncol 15:e371–e381

    Article  PubMed  Google Scholar 

  2. Diaz-Lagares A, Alegre E, Arroyo A et al (2011) Evaluation of multiple serum markers in advanced melanoma. Tumour Biol 32:1155–1161

    Article  CAS  PubMed  Google Scholar 

  3. Sanmamed MF, Fernandez-Landazuri S, Rodriguez C et al (2014) Relevance of MIA and S100 serum tumor markers to monitor BRAF inhibitor therapy in metastatic melanoma patients. Clin Chim Acta 429:168–174

    Article  CAS  PubMed  Google Scholar 

  4. Schwarzenbach H, Hoon DS, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11:426–437

    Article  CAS  PubMed  Google Scholar 

  5. Dawson SJ, Tsui DW, Murtaza M et al (2013) Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 368:1199–1209

    Article  CAS  PubMed  Google Scholar 

  6. Oxnard GR, Paweletz CP, Kuang Y et al (2014) Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin Cancer Res 20:1698–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Taly V, Pekin D, Benhaim L et al (2013) Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients. Clin Chem 59:1722–1731

    Article  CAS  PubMed  Google Scholar 

  8. Thierry AR, Mouliere F, El Messaoudi S et al (2014) Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat Med 20:430–435

    Article  CAS  PubMed  Google Scholar 

  9. Huggett JF, Whale A (2013) Digital PCR as a novel technology and its potential implications for molecular diagnostics. Clin Chem 59:1691–1693

    Article  CAS  PubMed  Google Scholar 

  10. Siravegna G, Bardelli A (2014) Minimal residual disease in breast cancer: in blood veritas. Clin Cancer Res 20:2505–2507

    Article  CAS  PubMed  Google Scholar 

  11. Ashida A, Uhara H, Kiniwa Y et al (2012) Assessment of BRAF and KIT mutations in Japanese melanoma patients. J Dermatol Sci 66:240–242

    Article  CAS  PubMed  Google Scholar 

  12. Cheng SP, Hsu YC, Liu CL et al (2014) Significance of allelic percentage of BRAF c.1799T > A (V600E) mutation in papillary thyroid carcinoma. Ann Surg Oncol 21[Suppl 4]:S619–S626

    Article  PubMed  Google Scholar 

  13. Didelot A, Le Corre D, Luscan A et al (2012) Competitive allele specific TaqMan PCR for KRAS, BRAF and EGFR mutation detection in clinical formalin fixed paraffin embedded samples. Exp Mol Pathol 92:275–280

    Article  CAS  PubMed  Google Scholar 

  14. Ashida A, Uhara H, Mikoshiba A et al (2015) Melanoma with BRAF mutation in circulating cell-free DNA despite no mutation in the primary lesion: a case report. Acta Derm Venereol 96:128–129

    Article  Google Scholar 

  15. Schreuer M, Meersseman G, van Den Herrewegen S et al (2016) Applications for quantitative measurement of BRAF V600 mutant cell-free tumor DNA in the plasma of patients with metastatic melanoma. Melanoma Res 26:157–163

    Article  CAS  PubMed  Google Scholar 

  16. Wakamatsu K, Ito S, Horikoshi T (1991) Normal values of urinary excretion and serum concentration of 5-S-cysteinyldopa and 6-hydroxy-5-methoxyindole-2-carboxylic acid, biochemical markers of melanoma progression. Melanoma Res 1:141–147

    Article  CAS  PubMed  Google Scholar 

  17. Sakaizawa K, Goto Y, Kiniwa Y et al (2012) Mutation analysis of BRAF and KIT in circulating melanoma cells at the single cell level. Br J Cancer 106:939–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stoecklein NH, Hosch SB, Bezler M et al (2008) Direct genetic analysis of single disseminated cancer cells for prediction of outcome and therapy selection in esophageal cancer. Cancer Cell 13:441–453

    Article  CAS  PubMed  Google Scholar 

  19. Diehl F, Schmidt K, Choti MA et al (2008) Circulating mutant DNA to assess tumor dynamics. Nat Med 14:985–990

    Article  CAS  PubMed  Google Scholar 

  20. Taniguchi K, Uchida J, Nishino K et al (2011) Quantitative detection of EGFR mutations in circulating tumor DNA derived from lung adenocarcinomas. Clin Cancer Res 17:7808–7815

    Article  CAS  PubMed  Google Scholar 

  21. Sanmamed MF, Fernandez-Landazuri S, Rodriguez C et al (2015) Quantitative cell-free circulating BRAFV600E mutation analysis by use of droplet digital PCR in the follow-up of patients with melanoma being treated with BRAF inhibitors. Clin Chem 61:297–304

    Article  CAS  PubMed  Google Scholar 

  22. Kukita Y, Uchida J, Oba S et al (2013) Quantitative identification of mutant alleles derived from lung cancer in plasma cell-free DNA via anomaly detection using deep sequencing data. PLoS One 8:e81468

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wakamatsu K, Kageshita T, Furue M et al (2002) Evaluation of 5-S-cysteinyldopa as a marker of melanoma progression: 10 years’ experience. Melanoma Res 12:245–253

    Article  CAS  PubMed  Google Scholar 

  24. Colombino M, Capone M, Lissia A et al (2012) BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J Clin Oncol 30:2522–2529

    Article  PubMed  Google Scholar 

  25. Saint-Jean M, Quereux G, Nguyen JM et al (2014) Is a single BRAF wild-type test sufficient to exclude melanoma patients from vemurafenib therapy? J Invest Dermatol 134:1468–1470

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Wakamatsu of the Fujita Health University School of Health Sciences for measurements of 5-SCD. This study was supported by a Grant-in-Aid for Scientific Research (C) 26461687 (to A. A.) from Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuhei Okuyama.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashida, A., Sakaizawa, K., Mikoshiba, A. et al. Quantitative analysis of the BRAF V600E mutation in circulating tumor-derived DNA in melanoma patients using competitive allele-specific TaqMan PCR. Int J Clin Oncol 21, 981–988 (2016). https://doi.org/10.1007/s10147-016-0976-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-016-0976-y

Keywords

Navigation