Skip to main content

Isolation and Quantification of Plasma Circulating Tumor DNA from Melanoma Patients

  • Protocol
  • First Online:
Melanoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2265))

Abstract

In recent years, circulating tumor DNA (ctDNA) has emerged as a promising prognostic and monitoring biomarker of various cancers, including melanoma. However, sensitive methods are required for its preservation, isolation, and detection. Here we describe a sensitive method for plasma ctDNA isolation using a column-based extraction kit, followed by quantification using a single mutational target with a droplet digital PCR system. This sensitive protocol has been successfully used to quantify diverse mutations present in plasma-derived ctDNA from cancer patients. The full procedure, from blood processing to the analysis of results, takes approximately a day of work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heitzer E, Haque IS, Roberts CES, Speicher MR (2019) Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet 20(2):71–88. https://doi.org/10.1038/s41576-018-0071-5

    Article  CAS  PubMed  Google Scholar 

  2. Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J (2016) Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 164(1–2):57–68. https://doi.org/10.1016/j.cell.2015.11.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Diefenbach RJ, Lee JH, Rizos H (2019) Monitoring melanoma using circulating free DNA. Am J Clin Dermatol 20(1):1–12. https://doi.org/10.1007/s40257-018-0398-x

    Article  PubMed  Google Scholar 

  4. Valpione S, Gremel G, Mundra P, Middlehurst P, Galvani E, Girotti MR, Lee RJ, Garner G, Dhomen N, Lorigan PC, Marais R (2018) Plasma total cell-free DNA (cfDNA) is a surrogate biomarker for tumour burden and a prognostic biomarker for survival in metastatic melanoma patients. Eur J Cancer 88:1–9. https://doi.org/10.1016/j.ejca.2017.10.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Seremet T, Planken S, Schreuer M, Jansen Y, Delaunoy M, El Housni H, Lienard D, Del Marmol V, Heimann P, Neyns B (2018) Illustrative cases for monitoring by quantitative analysis of BRAF/NRAS ctDNA mutations in liquid biopsies of metastatic melanoma patients who gained clinical benefits from anti-PD1 antibody therapy. Melanoma Res 28(1):65–70. https://doi.org/10.1097/cmr.0000000000000415

    Article  CAS  PubMed  Google Scholar 

  6. Rowe SP, Luber B, Makell M, Brothers P, Santmyer J, Schollenberger MD, Quinn H, Edelstein DL, Jones FS, Bleich KB, Sharfman WH, Lipson EJ (2018) From validity to clinical utility: the influence of circulating tumor DNA on melanoma patient management in a real-world setting. Mol Oncol 12(10):1661–1672. https://doi.org/10.1002/1878-0261.12373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Herbreteau G, Vallee A, Knol AC, Theoleyre S, Quereux G, Varey E, Khammari A, Dreno B, Denis MG (2018) Quantitative monitoring of circulating tumor DNA predicts response of cutaneous metastatic melanoma to anti-PD1 immunotherapy. Oncotarget 9(38):25265–25276. https://doi.org/10.18632/oncotarget.25404

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lee JH, Long GV, Boyd S, Lo S, Menzies AM, Tembe V, Guminski A, Jakrot V, Scolyer RA, Mann GJ, Kefford RF, Carlino MS, Rizos H (2017) Circulating tumour DNA predicts response to anti-PD1 antibodies in metastatic melanoma. Ann Oncol 28(5):1130–1136. https://doi.org/10.1093/annonc/mdx026

    Article  CAS  PubMed  Google Scholar 

  9. Wong SQ, Raleigh JM, Callahan J, Vergara IA, Ftouni S, Hatzimihalis A, Colebatch AJ, Li J, Semple T, Doig K, Mintoff C, Sinha D, Yeh P, Silva MJ, Alsop K, Thorne H, Bowtell DD, Gyorki DE, Arnau GM, Cullinane C, Kee D, Brady B, Kelleher F, Dawson MA, Papenfuss AT, Shackleton M, Hicks RJ, McArthur GA, Sandhu S, Dawson S-J (2017) Circulating tumor DNA analysis and functional imaging provide complementary approaches for comprehensive disease monitoring in metastatic melanoma. JCO Precis Oncol 1:1–14. https://doi.org/10.1200/po.16.00009

    Article  CAS  Google Scholar 

  10. Gray ES, Rizos H, Reid AL, Boyd SC, Pereira MR, Lo J, Tembe V, Freeman J, Lee JH, Scolyer RA, Siew K, Lomma C, Cooper A, Khattak MA, Meniawy TM, Long GV, Carlino MS, Millward M, Ziman M (2015) Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma. Oncotarget 6(39):42008–42018. https://doi.org/10.18632/oncotarget.5788

    Article  PubMed  PubMed Central  Google Scholar 

  11. Santiago-Walker A, Gagnon R, Mazumdar J, Casey M, Long GV, Schadendorf D, Flaherty K, Kefford R, Hauschild A, Hwu P, Haney P, O'Hagan A, Carver J, Goodman V, Legos J, Martin AM (2016) Correlation of BRAF mutation status in circulating-free dna and tumor and association with clinical outcome across four BRAFi and MEKi clinical trials. Clin Cancer Res 22(3):567–574. https://doi.org/10.1158/1078-0432.Ccr-15-0321

    Article  CAS  PubMed  Google Scholar 

  12. McEvoy AC, Warburton L, Al-Ogaili Z, Celliers L, Calapre L, Pereira MR, Khattak MA, Meniawy TM, Millward M, Ziman M, Gray ES (2018) Correlation between circulating tumour DNA and metabolic tumour burden in metastatic melanoma patients. BMC Cancer 18(1):726. https://doi.org/10.1186/s12885-018-4637-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee JH, Saw RP, Thompson JF, Lo S, Spillane AJ, Shannon KF, Stretch J, Howle J, Menzies AM, Carlino MS, Kefford RF, Long GV, Scolyer RA, Rizos H (2019) Pre-operative ctDNA predicts survival in high-risk stage III cutaneous melanoma patients. Ann Oncol 30(5):815–822. https://doi.org/10.1093/annonc/mdz075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tan L, Sandhu S, Lee RJ, Li J, Callahan J, Ftouni S, Dhomen N, Middlehurst P, Wallace A, Raleigh J, Hatzimihalis A, Henderson MA, Shackleton M, Haydon A, Mar V, Gyorki DE, Oudit D, Dawson MA, Hicks RJ, Lorigan P, McArthur GA, Marais R, Wong SQ, Dawson SJ (2019) Prediction and monitoring of relapse in stage III melanoma using circulating tumor DNA. Ann Oncol 30(5):804–814. https://doi.org/10.1093/annonc/mdz048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cavallone L, Aldamry M, Lafleur J, Lan C, Gonzalez Ginestet P, Alirezaie N, Ferrario C, Aguilar-Mahecha A, Basik M (2019) A study of pre-analytical variables and optimization of extraction method for circulating tumor DNA measurements by digital droplet PCR. Cancer Epidemiol Biomark Prev 28(5):909–916. https://doi.org/10.1158/1055-9965.Epi-18-0586

    Article  CAS  Google Scholar 

  16. El Messaoudi S, Rolet F, Mouliere F, Thierry AR (2013) Circulating cell free DNA: preanalytical considerations. Clin Chim Acta 424:222–230. https://doi.org/10.1016/j.cca.2013.05.022

    Article  CAS  PubMed  Google Scholar 

  17. Ward Gahlawat A, Lenhardt J, Witte T, Keitel D, Kaufhold A, Maass KK, Pajtler KW, Sohn C, Schott S (2019) Evaluation of storage tubes for combined analysis of circulating nucleic acids in liquid biopsies. Int J Mol Sci 20(3):704. https://doi.org/10.3390/ijms20030704

    Article  CAS  PubMed Central  Google Scholar 

  18. Kang Q, Henry NL, Paoletti C, Jiang H, Vats P, Chinnaiyan AM, Hayes DF, Merajver SD, Rae JM, Tewari M (2016) Comparative analysis of circulating tumor DNA stability in K(3)EDTA, Streck, and CellSave blood collection tubes. Clin Biochem 49(18):1354–1360. https://doi.org/10.1016/j.clinbiochem.2016.03.012

    Article  CAS  PubMed  Google Scholar 

  19. Lampignano R, Neumann MHD, Weber S, Kloten V, Herdean A, Voss T, Groelz D, Babayan A, Tibbesma M, Schlumpberger M, Chemi F, Rothwell DG, Wikman H, Galizzi JP, Bergheim IR, Russnes H, Mussolin B, Bonin S, Voigt C, Musa H, Pinzani P, Lianidou E, Brady G, Speicher MR, Pantel K, Betsou F, Schuuring E, Kubista M, Ammerlaan W, Sprenger-Haussels M, Schlange T, Heitzer E (2019) Multicenter evaluation of circulating cell-free DNA extraction and downstream analyses for the development of standardized (pre)analytical work flows. Clin Chem 66(1):149–160. https://doi.org/10.1373/clinchem.2019.306837

    Article  Google Scholar 

  20. Kloten V, Rüchel N, Brüchle NO, Gasthaus J, Freudenmacher N, Steib F, Mijnes J, Eschenbruch J, Binnebösel M, Knüchel R, Dahl E (2017) Liquid biopsy in colon cancer: comparison of different circulating DNA extraction systems following absolute quantification of KRAS mutations using Intplex allele-specific PCR. Oncotarget 8(49):86253–86263. https://doi.org/10.18632/oncotarget.21134

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sorber L, Zwaenepoel K, Deschoolmeester V, Roeyen G, Lardon F, Rolfo C, Pauwels P (2017) A comparison of cell-free DNA isolation kits: isolation and quantification of cell-free dna in plasma. J Mol Diagn 19(1):162–168. https://doi.org/10.1016/j.jmoldx.2016.09.009

    Article  CAS  PubMed  Google Scholar 

  22. Streubel A, Stenzinger A, Stephan-Falkenau S, Kollmeier J, Misch D, Blum TG, Bauer T, Landt O, Am Ende A, Schirmacher P, Mairinger T, Endris V (2019) Comparison of different semi-automated cfDNA extraction methods in combination with UMI-based targeted sequencing. Oncotarget 10(55):5690–5702. https://doi.org/10.18632/oncotarget.27183

    Article  PubMed  PubMed Central  Google Scholar 

  23. Holmberg RC, Gindlesperger A, Stokes T, Lopez D, Hyman L, Freed M, Belgrader P, Harvey J, Li Z (2013) Akonni TruTip(®) and Qiagen(®) methods for extraction of fetal circulating DNA--evaluation by real-time and digital PCR. PLoS One 8(8):e73068–e73068. https://doi.org/10.1371/journal.pone.0073068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, Dunning MJ, Gale D, Forshew T, Mahler-Araujo B, Rajan S, Humphray S, Becq J, Halsall D, Wallis M, Bentley D, Caldas C, Rosenfeld N (2013) Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 368(13):1199–1209. https://doi.org/10.1056/NEJMoa1213261

    Article  CAS  PubMed  Google Scholar 

  25. Leary RJ, Kinde I, Diehl F, Schmidt K, Clouser C, Duncan C, Antipova A, Lee C, McKernan K, De La Vega FM, Kinzler KW, Vogelstein B, Diaz LA, Velculescu VE (2010) Development of personalized tumor biomarkers using massively parallel sequencing. Sci Transl Med 2(20):20ra14. https://doi.org/10.1126/scitranslmed.3000702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Leary RJ, Sausen M, Kinde I, Papadopoulos N, Carpten JD, Craig D, O’Shaughnessy J, Kinzler KW, Parmigiani G, Vogelstein B, Diaz LA, Velculescu VE (2012) Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med 4(162):162ra154. https://doi.org/10.1126/scitranslmed.3004742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Murtaza M, Dawson S-J, Tsui DWY, Gale D, Forshew T, Piskorz AM, Parkinson C, Chin S-F, Kingsbury Z, Wong ASC, Marass F, Humphray S, Hadfield J, Bentley D, Chin TM, Brenton JD, Caldas C, Rosenfeld N (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497:108. https://doi.org/10.1038/nature12065

    Article  CAS  PubMed  Google Scholar 

  28. Gray ES, Witkowski T, Pereira M, Calapre L, Herron K, Irwin D, Chapman B, Khattak MA, Raleigh J, Hatzimihalis A, Cebon J, Sandhu S, McArthur GA, Millward M, Ziman M, Dobrovic A, Wong SQ (2019) Genomic analysis of circulating tumor DNA using a melanoma-specific UltraSEEK oncogene panel. J Mol Diagn 21(3):418–426. https://doi.org/10.1016/j.jmoldx.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  29. Calapre L, Giardina T, Robinson C, Reid AL, Al-Ogaili Z, Pereira MR, McEvoy AC, Warburton L, Hayward NK, Khattak MA, Meniawy TM, Millward M, Amanuel B, Ziman M, Gray ES (2019) Locus-specific concordance of genomic alterations between tissue and plasma circulating tumor DNA in metastatic melanoma. Mol Oncol 13(2):171–184. https://doi.org/10.1002/1878-0261.12391

    Article  CAS  PubMed  Google Scholar 

  30. Olmedillas-Lopez S, Garcia-Arranz M, Garcia-Olmo D (2017) Current and emerging applications of droplet digital PCR in oncology. Mol Diagn Ther 21(5):493–510. https://doi.org/10.1007/s40291-017-0278-8

    Article  CAS  PubMed  Google Scholar 

  31. Ascierto PA, Minor D, Ribas A, Lebbe C, O'Hagan A, Arya N, Guckert M, Schadendorf D, Kefford RF, Grob JJ, Hamid O, Amaravadi R, Simeone E, Wilhelm T, Kim KB, Long GV, Martin AM, Mazumdar J, Goodman VL, Trefzer U (2013) Phase II trial (BREAK-2) of the BRAF inhibitor dabrafenib (GSK2118436) in patients with metastatic melanoma. J Clin Oncol 31(26):3205–3211. https://doi.org/10.1200/jco.2013.49.8691

    Article  CAS  PubMed  Google Scholar 

  32. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, Bartlett BR, Wang H, Luber B, Alani RM, Antonarakis ES, Azad NS, Bardelli A, Brem H, Cameron JL, Lee CC, Fecher LA, Gallia GL, Gibbs P, Le D, Giuntoli RL, Goggins M, Hogarty MD, Holdhoff M, Hong SM, Jiao Y, Juhl HH, Kim JJ, Siravegna G, Laheru DA, Lauricella C, Lim M, Lipson EJ, Marie SK, Netto GJ, Oliner KS, Olivi A, Olsson L, Riggins GJ, Sartore-Bianchi A, Schmidt K, Shih l M, Oba-Shinjo SM, Siena S, Theodorescu D, Tie J, Harkins TT, Veronese S, Wang TL, Weingart JD, Wolfgang CL, Wood LD, Xing D, Hruban RH, Wu J, Allen PJ, Schmidt CM, Choti MA, Velculescu VE, Kinzler KW, Vogelstein B, Papadopoulos N, Diaz LA Jr (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6(224):224ra224. https://doi.org/10.1126/scitranslmed.3007094

    Article  CAS  Google Scholar 

  33. Sanmamed MF, Fernandez-Landazuri S, Rodriguez C, Zarate R, Lozano MD, Zubiri L, Perez-Gracia JL, Martin-Algarra S, Gonzalez A (2015) Quantitative cell-free circulating BRAFV600E mutation analysis by use of droplet digital PCR in the follow-up of patients with melanoma being treated with BRAF inhibitors. Clin Chem 61(1):297–304. https://doi.org/10.1373/clinchem.2014.230235

    Article  CAS  PubMed  Google Scholar 

  34. Chang GA, Tadepalli JS, Shao Y, Zhang Y, Weiss S, Robinson E, Spittle C, Furtado M, Shelton DN, Karlin-Neumann G, Pavlick A, Osman I, Polsky D (2016) Sensitivity of plasma BRAFmutant and NRASmutant cell-free DNA assays to detect metastatic melanoma in patients with low RECIST scores and non-RECIST disease progression. Mol Oncol 10(1):157–165. https://doi.org/10.1016/j.molonc.2015.09.005

    Article  CAS  PubMed  Google Scholar 

  35. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, Nickerson E, Auclair D, Li L, Place C, Dicara D, Ramos AH, Lawrence MS, Cibulskis K, Sivachenko A, Voet D, Saksena G, Stransky N, Onofrio RC, Winckler W, Ardlie K, Wagle N, Wargo J, Chong K, Morton DL, Stemke-Hale K, Chen G, Noble M, Meyerson M, Ladbury JE, Davies MA, Gershenwald JE, Wagner SN, Hoon DS, Schadendorf D, Lander ES, Gabriel SB, Getz G, Garraway LA, Chin L (2012) A landscape of driver mutations in melanoma. Cell 150(2):251–263. https://doi.org/10.1016/j.cell.2012.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dutton-Regester K, Gartner JJ, Emmanuel R, Qutob N, Davies MA, Gershenwald JE, Robinson W, Robinson S, Rosenberg SA, Scolyer RA, Mann GJ, Thompson JF, Hayward NK, Samuels Y (2014) A highly recurrent RPS27 5'UTR mutation in melanoma. Oncotarget 5(10):2912–2917. https://doi.org/10.18632/oncotarget.2048

    Article  PubMed  PubMed Central  Google Scholar 

  37. Krauthammer M, Kong Y, Ha BH, Evans P, Bacchiocchi A, McCusker JP, Cheng E, Davis MJ, Goh G, Choi M, Ariyan S, Narayan D, Dutton-Regester K, Capatana A, Holman EC, Bosenberg M, Sznol M, Kluger HM, Brash DE, Stern DF, Materin MA, Lo RS, Mane S, Ma S, Kidd KK, Hayward NK, Lifton RP, Schlessinger J, Boggon TJ, Halaban R (2012) Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet 44(9):1006–1014. https://doi.org/10.1038/ng.2359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nikolaev S, Rimoldi D, Iseli C, Valsesia A, Robyr D, Gehrig C, Harshman K, Guipponi M, Bukach O, Zoete V, Michielin O, Muehlethaler K, Speiser D, Beckmann J, Xenarios I, Halazonetis T, Jongeneel C, Stevenson B, Antonarakis S (2011) Exome sequencing identifies recurrent somatic MAP 2K1 and MAP 2K2 mutations in melanoma. Nat Genet 44(2):133–139. https://doi.org/10.1038/ng.1026

    Article  CAS  PubMed  Google Scholar 

  39. Lopez GY, Reitman ZJ, Solomon D, Waldman T, Bigner DD, McLendon RE, Rosenberg SA, Samuels Y, Yan H (2010) IDH1(R132) mutation identified in one human melanoma metastasis, but not correlated with metastases to the brain. Biochem Biophys Res Commun 398(3):585–587. https://doi.org/10.1016/j.bbrc.2010.06.125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cancer Genome Atlas Network (2015) Genomic classification of cutaneous melanoma. Cell 161(7):1681–1696. https://doi.org/10.1016/j.cell.2015.05.044

    Article  CAS  Google Scholar 

  41. Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A, Gast A, Kadel S, Moll I, Nagore E, Hemminki K, Schadendorf D, Kumar R (2013) TERT promoter mutations in familial and sporadic melanoma. Science 339(6122):959–961. https://doi.org/10.1126/science.1230062

    Article  CAS  PubMed  Google Scholar 

  42. Denisova E, Heidenreich B, Nagore E, Rachakonda PS, Hosen I, Akrap I, Traves V, Garcia-Casado Z, Lopez-Guerrero JA, Requena C, Sanmartin O, Serra-Guillen C, Llombart B, Guillen C, Ferrando J, Gimeno E, Nordheim A, Hemminki K, Kumar R (2015) Frequent DPH3 promoter mutations in skin cancers. Oncotarget 6(34):35922–35930. https://doi.org/10.18632/oncotarget.5771

    Article  PubMed  PubMed Central  Google Scholar 

  43. McEvoy AC, Calapre L, Pereira MR, Giardina T, Robinson C, Khattak MA, Meniawy TM, Pritchard AL, Hayward NK, Amanuel B, Millward M, Ziman M, Gray ES (2017) Sensitive droplet digital PCR method for detection of TERT promoter mutations in cell free DNA from patients with metastatic melanoma. Oncotarget 8(45):78890–78900. https://doi.org/10.18632/oncotarget.20354

    Article  PubMed  PubMed Central  Google Scholar 

  44. Reid AL, Freeman JB, Millward M, Ziman M, Gray ES (2015) Detection of BRAF-V600E and V600K in melanoma circulating tumour cells by droplet digital PCR. Clin Biochem 48(15):999–1002. https://doi.org/10.1016/j.clinbiochem.2014.12.007

    Article  CAS  PubMed  Google Scholar 

  45. QIAamp circulating nucleic acid handbook. https://www.qiagen.com/au/resources/resourcedetail?id=0c4b31ab-f4fb-425f-99bf-10ab9538c061&lang=en. 

    Google Scholar 

  46. Bio-Rad Rare Mutation Detection Best Practices Guidelines. https://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_6628.pdf.

    Google Scholar 

  47. QX200 droplet reader and QuantaSoft software instruction manual. https://www.bio-rad.com/webroot/web/pdf/lsr/literature/10031906.pdf

    Google Scholar 

  48. Bio-Rad Bio-Rad Mutation Detection Software. https://www.bio-rad.com/digital-assays/#/assays-create/mutation. Bio-Rad Laboratories, Inc. Accessed 2020

  49. Colebatch AJ, Witkowski T, Waring PM, McArthur GA, Wong SQ, Dobrovic A (2018) Optimizing amplification of the GC-rich TERT promoter region using 7-Deaza-dGTP for droplet digital PCR quantification of TERT promoter mutations. Clin Chem 64(4):745–747. https://doi.org/10.1373/clinchem.2017.284257

    Article  CAS  PubMed  Google Scholar 

  50. Milbury CA, Zhong Q, Lin J, Williams M, Olson J, Link DR, Hutchison B (2014) Determining lower limits of detection of digital PCR assays for cancer-related gene mutations. Biomol Detect Quantif 1(1):8–22. https://doi.org/10.1016/j.bdq.2014.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  51. van der Meer AJ, Kroeze A, Hoogendijk AJ, Soussan AA, Ellen van der Schoot C, Wuillemin WA, Voermans C, van der Poll T, Zeerleder S (2019) Systemic inflammation induces release of cell-free DNA from hematopoietic and parenchymal cells in mice and humans. Blood Adv 3(5):724–728. https://doi.org/10.1182/bloodadvances.2018018895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elin S. Gray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Marsavela, G., Reid, A., Gray, E.S., Calapre, L. (2021). Isolation and Quantification of Plasma Circulating Tumor DNA from Melanoma Patients. In: Hargadon, K.M. (eds) Melanoma. Methods in Molecular Biology, vol 2265. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1205-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1205-7_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1204-0

  • Online ISBN: 978-1-0716-1205-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics